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J-STOCHWARS and Beyond:
MODELS FOR FORCE MOTION AND
INTERACTION THAT REPRESENT
UNCERTAIN PERCEPTION

D. P. Gaver
P. A. Jacobs
M. A. Youngren
S. H. Parry

SUMMARY

This report records work carried out on a theater-level simulation modeling effort
entitled J-STOCHWARS (JS). 1t is a connected set of working papers: minimal attempt
has been made to polish the prose, and redundancies occur. There remain needed
additions and modifications. These will be made as the authors adapt the ideas for use in
planning models that are under current, and future military development. Work on the
simulation model has been supplanted by an analytical scoping model, Battlespace
Information War (BAT/IW).

The emphasis of the report is upon recognition, characterization and exploitation and
control of aspects of uncertainty in military operations. It emphasizes simple low-
resolution representations of the products of generic imaging sensors. Later work will
deal with other input, such as ELINT and COMINT. We provide ideas as to how such
information products can be combined or fused, basically using a Bayesian and
Gaussian/Normal-distribution theory format for computational and conceptual
convenience. We investigate processes for probabilistically updating opponent course of
action (COA) estimates.

Many of the computational ideas and algorithms have been incorporated in a
computer program termed Joint Warfare Analysis Experimental Prototype (JWAEP). The |
latter runs on a SUN computer.



1. Background

It is a truism to state that when several military forces jointly interact within a theater
to oppose the actions of another they do so under conditions of substantial uncertainty as
to the outcome. In fact, Carl von Clausewitz has said “War is the realm of uncertainty:
three quarters of the factors on which action in war is based are wrapped in a fog of
greater or lesser uncertainty. A sensitivity and discriminating judgment is called for; a
skilled intelligence to scent out the truth.” The purpose of this report is to list many of the
sources of that uncertainty and to explore ways of describing their possible impact on a
theater-level conflict, as the latter may develop over time. The style used is that of
quantitative mathematical modeling, but many of the numbers (parameters) are at best
tentative, as are the ways of representing their interaction (the models). Mathematical
modeling requires specificity to obtain actual numerical “results”, but in many situations
these results must be treated as suggestive and tentative, and neither accepted nor
discounted too hastily, without assessing both vices and virtues of the modeling option
currently in use. Our approach will be to propose and give arguments for, and against, a
variety of such options for many aspects of theater-level conflict problems without
exclusively endorsing any one.

Our purpose is to develop models that have the “feel” of aspects of real campaigns,
but that omit many details. They are “low resolution” by design. In particular, the optional
approaches should allow the user-analyst to efficiently experience alternative futures that
might plausibly follow from adopting certain doctrinal options.

This report is a record of work done on various aspects of theater level combat
modeling; the emphasis is on simple perception modeling and not on attrition as this

might be linked to perception. Work on the latter is reported elsewhere.



1.1 Sources of Uncertainty

Sources of uncertainty in militafy operations, and options and variations in the
modeling thereof, are many. For a recent general review see Hughes (1994). Prominent
among them is the actual, operationally relevant, status of various physical aspects of the
theater environment, e.g. of the geographical terrain and weather, as influenced by season
and time-of-day; others can be identified. Abbreviate designation of this class by PEUF
for physical environment uncertainty factors. PEUF influence speed and predictability of
force movement, visibility and hence detection and classification of force elements,
fortification potential or the defensibility of specific locations, communications,
equipment performance and reliability, ultimately even morale, all to varying degrees,
many of which may be anticipated by an opponent, but with inevitable error.

Another prominent and related uncertainty source has to do with the trustworthiness
of intelligence, this term generically referring minimally to knowledge of the present
location, activity and current motion of both opponents’ forces by their respective
opponents. This knowledge, with its inevitable uncertainty, depends on the types, manner
of utilization, and product of information-gathering sensory assets. These range from
human scouts and informants (HUMINT) to electronic intelligence (ELINT) acquisition
assets such as radars or sonars, either stationary or carried on various mobile platforms
(manned or unmanned reconnaissance, aircraft or ground vehicles, satellites, etc.) that
actively search certain aspects of terrain for opponent asset occupancy, but with
unavoidable omissions and inaccuracies.

Additional sources of information, also susceptible to errors and omissions of
acquisition and interpretation, including active opponent deception, are a variety of assets
such as satellites, manned reconnaissance platforms, UAVs, and TUGVs. All of these
ultimately supply images that must be interpreted. We group these in the category

abbreviated as IMINT. In addition, there is the information to be gained from sensing the




communication emissions of an opponent force and interpreting their meaning. This area
is called COMINT, and is useful but also susceptible to errors of misinterpretation and
delay. The uncertainty associated with (only!) the physical performance of information-
gathering assets, e.g. its probability of detection of a specified target asset such as a tank
(or tank company) or armored personnel carrier, its probability of correct classification
given detection, its accuracy of location of the sensed asset (conditional on the sensor
system operator’s skill and the surrounding physical and operational conditions) can be
abbreviated as PIAU, or physical intelligence asset uncertainty factors.

When actual combat occurs further sources of uncertainty must be confronted, namely
the physical capabilities of the weapons brought to bear. Even if intended targets are
well-located and weaponry is extremely accurate (“smart”) and well-matched to target
vulnerability there are ample opportunities for errors and equipment (and operator)
failures that can lead to partially- successful mission accomplishment, and hence
requirement for follow-up action. We lump such physical weapon asset uncertainty into a
category abbreviated by PWAU. It is apparent that eveﬂ smart weapons can be decoyed or
otherwise duped, which adds a further element of uncertainty, and necessitates thoughtful
battle damage assessment (BDA), in turn influenced by PIAU as above.

The above rough categorization of the major physical components of uncertainty that
must be considered by both opponents and allies in theater level warfare is not
exhaustive. There are other far more tenuous components that are, however, significantly
affected by the stark physical influences mentioned above. A major component of the
overall uncertainty must be that concerning the territorial objectives of, say, an aggressor
into a neighboring area, and the willingness or resolve to attain those objectives at the
expense of losses of assets and his/her own territory. It is far more difficult to credibly
quantify the uncertain tenacity of an enemy force in the face of actual or prospective

attrition than it is to model physically-based uncertainties associated with unopposed



enemy advance rate through somewhat unknown, and unexpectedly variable, terrain
while accounting somewhat approximately for that force’s size and weapons and
intelligence capabilities. Opponent resolve and tenacity have often been modeled by
thresholds that limit attrition in case combat occurs, perhaps by withdrawing, but also by
calling for reinforcements, which are then unavailable to another area or conflict in a
different sub-theater. Note that the thresholds can be of various forms: they can reflect
own force losses (or prospective losses), or, additionally, estimates of opponent force
losses; the latter may well be “known” only roughly. Thresholds may also be expressed as
current or projected rates or estimated rates (derivatives) of loss, cf. Helmbold (1971).

A generic scenario of Red and Blue forces moving towards a common objective in an
invasion, occupation, protection scenario is described in the next section. A brief
description of the physical theater in terms of physical nodes and arcs is given.
Increasingly detailed models of force movement along arcs are presented in Sections 2
and 3. Models for detection and tracking of units are also introduced. Procedures for
estimating each side’s units’ velocities, arrival time at the objective and unit size are
proposed and studied. In Sections 4 — 6, procedures for estimating the number of assets
on a node or arc based on binomial, beta-binomial and multinomial models for sensor
observations are proposed and studied. In Section 7, procedures for estimating the
number and types of military units on a node/arc based on estimates of the number of
assets at that node and neighboring nodes are studied. Section 8 describes a formulation
of each side’s course of action (COA) in a conflict. Procedures for one side to estimate,
using sensor observations, the probability the other side is following each COA are
described.

The present report is a progress statement that documents ideas and concepts that may

* be useful in other modeling projects. Some, but not yet all, of these ideas have been



realized in JWAEP (Joint Warfare Analysis Experimental Prototype), a demonstration

software package described in the JWAEP User’s Manual; cf. Youngren (1996).

2. Invasion-Occupation-Protection Dynamics: A Simple Prototypical

Example

We propose for initial discussion a simplified prototype for many real situations:

Iraq’s invasion of, and expulsion from, Kuwait, or its possible invasion of other

neighboring countries; North Korea’s possible invasion of South Korea, and perhaps

others on a smaller scale. It is stipulated to possess these elements:

(2)

(b)

©

(d)

A region, abbreviated %, that is in dispute, possibly because of its desirable
resources (oil, resort areas and gambling casinos, bountiful production of, say, hog
jowls or titanium).

One (or more) unfriendly invading forces, termed Red, that intend to capture
territory and exploit resources of V. They must enter the region by crossing its
boundaries. Some entry points have advantages, i.e. are less well-protected or
defensible than others. Let R(?) be the size of Red force(s) at ¢. R(z) is actually a
vector whose components are numbers of force types and their locations; R(¢) is Red
ground truth at time ¢.

A protective or defensive force, or forces, that also originates outside of %, call it
Blue (B). Its force size is B(f). If an offensive move by R occurs, B responds in one
of several ways. B(?) is also a vector as is R(?); it is Blue ground truth at t. There is
dynamic interaction between R(¢) and B(?).

A civilian or non-combatant indigenous population; it may well be that the
population must be split into segments sympathetic to R, Cg(¢) in number, and those
sympathetic to B, Cp(f), with total C(¢) = Cp(¢) + Cp(r). Finer distinctions are
always possible, in which case, the above state variable may be a vector. In many
situations affiliations would change as combat progresses and population elements
alter their perceptions as to whom they might wish to ally themselves with.
Considerations for such a population can well be a major concern in operations-

other-than-war (OOTW) or peacekeeping scenarios.



(¢) An indigenous military force able to delay, but not repel, an unfriendly invading
force, or forces. Let I(¢) generally denote the size of that force at time ¢; realistically
it will be vector-valued so as to represent force components: infantry, armor,
artillery, air, etc. There may also be indigenous forces that are allies of the invaders;
let the number of these be Iz(¢). Those allied with B are Ip(f) in number.

Of course the implications of the above terminology need not hold for all situations,
i.e. that the region, %, is in friendly (to B) hands initially and is threatened by “bad guys”
and protected by “good guys”. In fact, V" may be initially in the hands of R, and its
domination could come under attack by B. And the geography must be specified in
enough detail to portray a region and the relevant surrounding territory. If desired, regions
can be represented as a union of non-overlapping subregions.
Geography: Arcs and Nodes

A theater, that is the geographical entities relevant to the elements (a) — (€) above, is
conveniently represented by a system of nodes: physical locations, fixed in space, and of
importance either because they have symbolic value, e.g. are centers of governmental
authority, or are suitable for defense by fortification or asset concealment because of
topography, or are significant locations for military assets such as airfields, surface-to-air
missile sites, (relatively) immobile command centers or possibly C3/I facilities. Nodes are
viewed as interconnected by arcs: road systems or other routes for the transit of ground
combatants. For some purposes it is useful to represent arcs as a sequence of discrete
locations (Subarcs, or compartments) between which military units transition.

In a naval context it may often be convenient to specify geographical locations as
being within particular broadened arcs or spatial compartments, shaped as squarés or
hexagons.

A primitive arc-node setup appears below:



Arc 1 (Red’s path to W) Arc 2 (Blue’s path to V)

N~
O by O\

Node 1 (Red Force; Node 2 Node 3 (Blue Force;
Home Location) %; (Disputed Region; Home Location)
Civilian & Indigenous
Force Location)

Figure 2.1
The above simplistic setup can be elaborated greatly: realistically there may be many
routes from Node 1 to Node 2, and Node 3 to Node 2, possibly by way of intermediate
nodes.

The arc-node representation is perhaps more appealing when alternative routes can be
cleanly and crisply distinguished because of topography (a substantial ground force does
not easily traverse mountain ranges) than when the topography is bland and neutral, as in
a desert, or in the open ocean. From the point of view of air warfare, wherein aircraft
from a source node may transit to a target area to conduct reconnaissance or an offensive
strike, arcs are a less attractive representation than is a broad “tiling” of the region,
possibly by square or hexagonal subregions or compartments. Sorties of aircraft simply
move, in appropriate ‘time, from tile or compartment (center) to a contiguous tile or
compartment (center) as they transit a region. Alternatively, straight line flight paths
could be scripted through the region.

Dynamics

Military operations by, say, Red, and in response by Blue, can be specified in terms of

arcs and nodes. For example, in Figure 2.1 a Red force moves on Arc 1 from N1 to N2.

Some options for the dynamics are listed below.



Option 1: Simple Random Time-On-Arc (Time-On-Node)

It is a reality that even an unopposed ground force unit will move across a giveﬁ
terrain route in a somewhat unpredictable, variable, or uncertain time. This is one
consequence of PEUF (Section 1). The simplest way of representing one such transit time
is to let it be a single random draw from an appropriate population, or realization, 7, of a
random variable, T. Then if D is the distance, say from Node 1 to Node 2 in Figure 2.1,
the velocity of transit is ¥'=D/T, a realization of a random variable. Having obtained T it
is then easy to locate the unit’s location (center) at time 0 <t < T after if leaves the origin
node if we assume a constant velocity: its distance from the starting node in the direction
of motion is D(f) = Dt/T; this number locates the unit on the arc and is referred to as
ground truth. Note that actual ground truth will vary across realizations of the model
because of the random variability of 7. Of course the distributional properties of T will
potentially depend on terrain type, even direction of motion, (e.g. up or down hill), unit
type, time of day, season of year, and perhaps other factors as well. Convenient candidate
distributional forms are the Gaussian or normal (adjusted to truncate away possible
negative values), the inverse Gaussian (which has naturally positive support), the
lognormal, log-logistic, gamma, Weibull, or other distributions with positive support. A
practical issue is that of actually specifying numerical parameters to specify the
distributional form selected. Estimates of the mean and variance should be available from
field data, but analyst or other expert judgment may well be required, at least initially.
The effect of concomitant explanatory variables can be incorporated by regression
modeling; see McCullagh and Nelder (1993). It will thus be possible to represent weather
effects by regression.

The advantage of this approach is its simplicity. Disadvantages or unrealities include
the fact that a unit’s .velocity across an arc is represented as constant once the time T is

selected; of course this will change when another plausible history is selected, i.e. on



another model evolution. If an event occurs while the unit is in transit, e.g. if it encounters
an obstacle such as a mine field and waits to sweep it, or alternatively bypasses it at the
cost of additional delay, a new random number must be drawn. Alternatively, the mean
and variance of the original time, T, may be adjusted to reflect such extra delays. Also, if
the unit in transit encounters an opponent and pauses for combat, another random draw
will be required to represent the future motion of the unit. Note that for the purpose of
reducing computing demand all elements or Subunits (e.g. companies) of a unit (e.g.
brigade) are represented as moving together. They may be conveniently viewed as located
in an assigned formation (template) within a moving rectangular matrix.
Option 2: Markovian Movement Through Subarcs

To better represent potential local in-transit variability of motion, suppose that an arc
between two consecutive nodes is divided into several consecutive Subarcs or

compartments; see below, where there are exactly & Subarcs.

O L 1+ 0

N, SA, SA, SA, N,

Figure 2.2
Imagine that a Unit (e.g. brigade) or collection of Subunits (e.g. companies composing a
brigade) leave Nj and enter SAj at ¢ = 0; they remain in SA; for a random residence time,
Ty, and thence move to SAj, from which they transit to SA3 after random residence time
T, and so on through SAj and to N». If the above process is defined in continuous time
(t € R™) and the transit/ residence times are independently and exponentially distributed
with parameters A; then the location of a unit, i.e. the Subarc occupied, at time ¢ is a
Markov process in continuous time. If the process is defined in discrete time, and the

transit/residence times are independently and geometrically distributed with probability of
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one-stage advance being p; (and staying in place on SA; with probability 1 — pj) then the
location of the unit at time (¢ € (0, 1, 2, ...) is Markov in discrete time.

Example: Suppose the motion process is in continuous time and all Subarc times, T7,
T, ... are independently and identically exponentially distributed, with parameter A.
Then the unit moving is located at/within Subarc j (j <k) at time ¢ with the Poisson

probability

J
P{Unit in subarcj at}=e* ();tl) ; @.D

the most likely Subarc to be in at ¢ is j = [A¢]; if [Af] 2 k+ 1 the Unit has arrived at Nj.
Now to calibrate parameters A and k to a specified mean unit velocity ¥ at which the
distance D is covered we require

L2

~=5=T. 2.2)

Nl

Suppose in addition we want to specify that the standard deviation of T is a fraction, £, of

T . This means that

F=IT=1% 23)
which implies that k= 1/2. Thus if f=0.10 the number of Subarcs k=100, while if
f=0.25, k= 16: the larger the variability the smaller the number of Subarcs required.
With a moderate number of Subarcs (even 16) it will usually be adequate to use the
normal approximation to the Poisson. The parameter A, or rate at which a Subunit moves
off a Subarc is, from (2.2), obtained as A=k/T , or, more intuitively, 1/1= T /k.

An extension of the previous simple model is to allow backward as well as forward

motion, and also pauses on an arc of more than one basic exponential duration.
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Numerical Illustration 2.1. Independent Simultaneous Approach; Race Towards a
Common Objective.

Figures 1 — 4 show the results of a simulation of the simultaneous approaches of Blue
and Red forces towards the common objective = N». For this illustration the two forces
move independently of each other. The Blue force starts from a distance of Dg =200
miles and moves at mean velocity Vg = 15 mph; Red from Dg = 100 miles, mean velocity
10 mph. Each distance is divided into 20 Subarcs. There were 1000 replications. A force
1s said to be late if it is not the first to arrive at V. The resulting lateness time is the length
of time after the first arrival until arrival of the late force. Of special tactical/operational
interest is the lateness of either Blue or Red: for the present situation Blue’s lateness
probability is estimated to be about 0.80; if late, Blue’s lateness time mean is 4.4 hours,
but the distribution of lateness time, given Blue arrives last, is substantially spread out,
providing Red considerable time to prepare a position on Nj. On the other hand, Red is
late with probability about 0.20; if late, Red’s lateness time mean is only about 2 hours
and seldom more than 5 hours. Note that a deterministic assessment of arrival order
would -be based on comparison of Dp/Vp =Tz = 200/15= 13.3 and Di/Vz =1z =
100/10 = 10, so on that basis Blue would always arrive 3.3 hours after Red. A more
refined and easy calculation is based on a normal approximation

Probability of Blue Lateness = P{T; T 20} =1-® k=T | 081 (2.4)
Jok +0%

where we have computed

2 =2
O'% =n3( Ds ) =—TL=8.8
Veng ng

(2.5)
7

ng

0% =2=50.

(If the simulated variances are used the result is 0.81, quite close to the simulation value.)

12



Discussion. The above illustration is quite rudimentary and unrealistic in that no sensor
activities and resulting information, and subsequent action changes, are modeled. It does,
however, illustrate the effect of variability in transit.

Numerical Illustration 2.2. Motion with Detection and Estimaﬁon of Arrival Time.

" Consider this movement scenario, similar to the above, but modeling detection by

Blue. Once again, Red is initially located a distance Dy from the objective %, Blue is
initially located a distance Dp from the objective %, the mean velocity for Red
(respectively Blue) is 7z (respectively 73).

Assume the distance Dg (respectively Dp) is divided into Ny (respectively Np) equal
Subarcs. Assume the time to transverse Subarc i for Red (respectively Blue) Tz(7)
(respectively Tp(i)) has a distribution with mean (Dg/ ¥ )/Ng (respectively (Dp/ V3 )/Np).

Example. Dp = 100 miles Dp = 200 miles
Vg = 10 miles/hr. Vs = 15mph

Both Blue and Red traverse 30 Subarcs. Suppose now that Blue can detect Red. The
probability that he detects Red on a Subarc, given her presence there, is &, temporarily
assumed constant. Thus it may be representative of wide-area theater-level, but not unit-
level, overhead assets, implicitly cueing a “soda straw” sensor such as UAV. The number
of the Subarc on which first detection is made has a geometric distribution (if there were

an unlimited number of subarcs)

P{M=k}=5(1-6Y" k=12,...

Assume that Blue tracks Red for d; Subarcs after detection at M. Blue’s estimate of the

velocity of Red is
M+d, -1
2 Tx(0)
Pooo|d=Msl 2.6
R =\ 4, Da/Vx (2.6)

13



where T(7) is a time to transit Subarc i, a realization of T(i). Blue’s estimate of Red’s

time of arrival at Nis

. M+d, | [ [Ne—(M+d,)] Mz

Ar =Dgl1- Ve = Tr(i). 2.7

§ R[ Ng :I/R d;Dg i=§+1R(l) ( )
M+d,

The elapsed time since the start of the replication is ZZ};(:‘). The number of the

i=1
Subarc that Blue is on at this time is

min{k: gﬂ ()< é Ty (i)} = Nz(B) 2.8)

where Tp(i) is Blue’s transit time on his Subarc i. Given Blue’s estimate of his own

velocity, Vp, Blue can estimate an approximate probability that Red will arrive at NV x

time units before Blue will.

1-p1(x)= P{ i Ts(i)> Ar +x}. 2.9)
i=Ng(B)+1

If the T(7) are exponentially distributed then the above calculation involves the survivor

function of a gamma random variable with shape parameter Ng — Ng(B).

Blue can potentially use the above results to calculate the chance of successfully
carrying out certain actions to slow or damage the Red force, e.g. before that force
reaches V; Blue may speed up, send strike or assign indirect fire assets to attrit and delay
Red, or use assets such as FASCAM (Family of Scattered Mines; an air or artillery-

delivered minefield) to create obstacles in Red’s path.
Numerical Illustration 2.3. Example.

Figures 5 — 10 display results for a simulation with 1000 replications in which the
time to transit a Subarc is normally distributed. The number of Subarcs is 20 for both Red

and Blue. The mean time for Red to transit a Subarc is (Dg/ ¥z )/20 with standard

14



deviation (0.3)(Dg/ ¥z )/20. The mean time for Blue to transit a Subarc is (Dp/ 73 )/20 with
standard deviation (0.3)(Dp/¥3)/20. Figures 5 and (respectively 6) show histograms of
the amount of time to transit the arc for Red (respectively Blue).

The probability of Blue detecting Red on a Subarc is §= 0.3. Figure 7 displays the
number of the Subarc on which Red is detected.

Blue then uses two additional Subarcs to estimate the velocity of Red. There are 3
replications in which Red is first detected on Subarcs 18 — 20. For these replications Blue
does not estimate the velocity of Red. Figure 8 displays a histogram of Blue’s estimates
of the velocity of Red. Figure 9 displays a histogram of Blue’s estimate of the mean time
remaining until Red achieves his objective. Figure 10 displays a histogram of Blue’s
estimate of the probability he achieves the objective first.

Numerical Hlustration 2.4. Velocity Estimation by Exponential Smoothing.
| Figures 11 — 14 show the results of a simulation in which there are 1000 replications.
- In each replication Red is Dg = 100 mi. away from his objective and is traveling with a

mean speed 'z = 10 mph. The arc along which Red is traveling is evenly divided into 20

Subarcs; thus each Subarc has a distance Dg(S) = 100/20 =5. The time Red takes to

travel a Subarc is normal with mean Dy / (f/} X 20) = (.5 hours and standard deviation

0.2 x 0.5 hours; the normal random numbers are left censored at 0.05. The probability
Blue detects Red on a Subarc is 0.3. Once Blue detects Red he is able to track Red.

One procedure for Blue to use to estimate Red’s velocity once Red is detected is

exponential smoothing. Let 17(1) be the estimate of Red’s velocity after Red passes

through Subarc i after Blue detects Red. Blue’s estimate of Red’s velocity after Subarc

i+1is

I7(i+1)=(1~a)17(i)+a[z}a(i—+l)jl—l

Dg(S)
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where TR(i + 1) is Red’s time to traverse Subarc i + 1. In the simulations = 1/3. The
estimated velocity can be used to estimate Red’s time of arrival at the objective.

Figure 11 displays the histograms of the estimate of Red’s velocity. One histogram
displays the estimate obtained by dividing the distance of two Subarcs by the time Red
takes to traverse the two Subarcs after the Subarc on which he is detected. The other
histogram displays the histogram of the exponential smooth estimate using those Subarcs
after detection that were traversed before time 6; the time of 6 was chosen arbitrarily as a
perception update time. Those replications for which there are not two Subarcs after
detection available for estimation before time 6 are not used. As expected, the
exponential smoothed estimate has less variability than the two Subarc estimates.

Figure 12 displays histograms of the error of the estimate of Red’s time of arrival at
his objective. The estimate using the exponential smoothed estimate of velocity is less
variable than that for the velocity estimate using two Subarcs; this is to be expected.

Figures 13 — 14 display results using the exponential smooth estimator of velocity at
times 3 and 6. In each case a replication is deleted if it does not have two Subarcs to use
before reporting. Figure 13 shows the histograms of the velocity estimates and Figure 14
shows histograms of the errors of the estimates of Red’s time of arrival at the objective.
The additional observation time to estimate the velocity of Red not surprisingly decreases
the variability of the estimates.

Example 2.5: Unit Markov Motion

Suppose, for specificity, that a Red Unit of population size R (measured in number of
Red Subunits, e.g. companies if R is one or more regiments or brigades) enters Arc 1
between Nj and Ny (Figure 2.2) via SA; at £=0: Let R1(0) =R and let Rj() =R if the
Unit is on Subarc j at time #; otherwise Rj(f)=0. Represent the Unit’s motion as

probabilistic as follows:
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P{Red Unit moves from SA ; to SA . in time step (¢, +d1 )| Xx(z) = x}
=r;(t,dt;x)
otherwise it remains at SA; for (f,¢+df) with probability 1-ri(t, dt; x). The time
increment dt need not be infinitesimal, e.g. it may be one hour.
The (vector-valued) variable Xp(f) represents a general external
influence, based on perception, upon the probability of advance by

Red. There exists a corresponding external influence variable, X3(?),
for Blue.

For instance Xp(f) may reflect the perception of Red that a Blue:force of some
estimated size is concentrated at a corresponding Subarc of Arc 2 (Figure 2.1) and that
the corresponding probability of advance to disputed Node 2 has a specified estimated
current value; this might be such that the Blue force will reach Ny (=) within a specified
(small) number of time steps with high probability. If this results in Blue reaching Nj
sufficiently in advance of Red to fortify and hence obtain an advantage, Red must decide
among operational options, such as (a) continue as planned; (b) speed up and reach Nj
first (with high probability) and itself fortify No; (c) place obstacles in Blue’s path (e.g.
emplace a minefield, or setup an ambush, at a Subarc between Blue’s current locatioh and
N3 so as to delay Blue’s progress, simultaneously proceeding towards Nj; (d) other (many
possibilities!). Blue has comparable operational options.

Example 2.6: Suppose there are Cj(f) Subunits on/in Subarc j at time f; j<k in
Figure 2.2. Then a number, Ej(z, t + df), may be ordered to move (emigrate) from Subarc j
to Subarc j + 1 in time dt (for the present dt is a fixed non-zero time interval analogous,
but not necessarily equal, to the PRT (perception review time) A). Likewise, a number
Ej.1(2, t + df) on j~1 may emigrate from Subarc j—1 to Subarc j, leaving a net number on
Subarc j equal to Ci(t +df) = Ci(t) + Ej.1(¢, t + df) — Ej(t, t + df). The above transfer of

Subunits is only feasible if there is a positive number of Units or Subunits on Subarcs j—1
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and j to immigrate and emigrate, which means that both Ej_; and E; are functions of their
parent Subarc population levels, Cj.1(¢) and Ci(#), being zero if those population levels are
Zero.
Example (Continued): Suppose that for the jth Subarc
Ej(t,r+dr)=Ci(1)1-e7%%); 1<j<k (2.10)
Then
Ci(e+dt) = C1)+ Cpa(e) 1574 ) - Gy (1) 1= 5)
(2.11)
= G {0)e 5 + Gy () 1- 75

which is feasible, giving a positive result. Furthermore it is readily advanced in time, e.g.
starting from the initial condition C1(0) = C, where C is the population size of a Unit

about to move onto the arc at z=0.
Ci (¢ +2dt) = Ci (¢ + dt)e™% + Gy (¢ +dt)(1- %)
=[Gule)e s + Ga()1- B
{07+ G178 1 -7 @12)
= Ci(e)e 6% o+ Gy (1) (1- 78 oo o (1 78t o6
+Cia(t)(1-e 2% )(1-e75),

Example (Continued): If & = £ i.e. if the transfer probability is the same for all Subarcs

it can be seen that, putting ndz =1,

o (t) =C, (ndt) = i C; (0)(,( ﬁj)(l —e )k—j (e—§dt )n—(k—j) . @.13)

In words, if there are initially C;(0) Subunits on/in Subarc j (0 <j < k) then any one of

these must make exactly £ —j transitions between intervening Subarcs in # time steps in
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order to be on/in Subarc k> at time ndt; there are ( k’ij) ways of selecting those that

“make it”. The formula (2.7) shows that if Co(0) = C Subunits start at time O then the

number at exactly the th Subarc at time ndt = ¢ is

Ce(t) = C(Z)(l —e ) () (2.14)

The Subarc containing the maximum number of Subunits is approximately k= n(1 —
e-54) when 7 is large; the number of Subunits on that particular Subarc approaches zero
as n becomes large, at a rate proportional to 1/ Jn , and those nearby have about the same
number: Subunits become quite dispersed.

Comment. The above transition law, with & or & constant, could be appropriate for a
disorganized force advance — or perhaps better, retreat — but is not truly representative
of the motion of a structured force’s coordinated advance towards a territorial objective.
However, the dispersive effect noted above can be remedied by introducing appropriate

time dependence into the parameters &.

3. A Red-Transit, Blue-Perception Vignette

At time ¢ =0, a Red Unit (e.g. Army brigade), composed of C Subunits, moves off a
physical node onto a transit node or arc. It spends a random transit time, T, on the arc,
after which it reaches a subsequent physical node. Blue’s objective is to estimate current
force size, C, on the arc from observations available from a sensor system.
Opponent (Blue) Perception: Observational Modeling

Suppose a Blue Overhead Sensor Suite is constantly observing the arc on which the
Red Subunit is moving, and that the random time, D, to detect any one of the Red Unit’s
Subunit components that leaves in a Lost or untracked stateA has exponential distribution
with mean 1/6 (rate ). Having detected such it tracks that Subunit for a random time L

until Joss of track occurs; L is assumed exponential with mean 1/7. Search resumes, and
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the unit is detected again at a time that is an independent replica of D (presuming it is still

on the arc); it is again susceptible to loss, and so on. The alternating sequences {Dj} and

{Ly} are assumed independent. Furthermore, individual Subunits are assumed to be

detected independently. It is clear that the appearance on the arc of the C Subunits

triggers C independent 2-state Markov chains. Note that a Subunit can be in a detection

state at = 0, as it begins transit, although the implication of the above discussion is that

some Subunits begin their transits anonymously, i.e. in a Lost or undetected state. It

follows that the number of units that start transit in a Lost state, Cz(0), and those that start

in a Detected/Tracked state, Cp(0), are, at Blue’s (first) Perception Review Time (PRT)

t¥A, in either a Lost or Detected/Tracked state Crp(A), Crr(A), Cpp(d), Cpr(A),

obeying the dynamics of a simple Markov chain with transition probabilities

C.(0
P{Cp(A)=vip(A)} = ) ((A)) pio(8)" M (1= puo(a)) O
€110 CL(0)-vie(a
P{CLL(A) = VLL(A)} = y EA)) PLL(A)‘.’LL(A)(I—pLL(A)) 1(0)-vie(8)
CD 0 Cp(0)-vpp(A
P{Cop(4)=vop(A)} =(V ((A)) PDD(A)VDD(A)(l—pDD(A)) o(0)-voo(4)
CD 0 0)-vpr(A
P{Cp.(A)=vp(A)} = {v ((A)) PDL(A)VDL(A)(I—- PDL(A))CD( Fvou(8)
where
poo(A) =~ 9 <1 o
pio(A)= 9 (1—e"(”+5)A) =1-pu(A).

n+o
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Recall that in Ground Truth C Red Subunits are hypothesized to be in motion on the arc
for time T; assume for now that T is long enough so that departure from the arc does not
occur. These same transition probabilities prevail at every future PRT, i.e. at kA, k=1, 2,
3, ..., so long as the Subunit remains on the arc.

It becomes necessary to specify Blue’s perception at =0 of the Red force size
actually departing. We state some options for both observations and inferences. Not all
are totally satisfactory.

Option 1: Simple Moment Estimators

It is easy to see from (3.1) — (3.4) that if C units transit
E[CD (A)ICD (0)] =Cp (O)pDD (A) + CL(O)pLD (A)

= Cp(0)ppp(A)+[C - Cp(0)]po(A).

(3.6)

Thus if Cp(A) is observed, giving Cp(A), a straightforward candidate moment estimate

for C, is based on only the first two observations

¢ _ Co(4)+Cp(0) po(A)~ pon(A)]

(A : (3.7)
(4) pio(d)
by stationarity an estimate based on any two consecutive observations is
R CplkA)+Cpl(k-1)A A)- A
C(kA)# _ D( )+ D(( ) )[pLD( ) PDD( )] (3.8)

pio(A)
Unfortunately these estimates, while technically unbiased, may assume negative values

for certain observational values. To avoid this inadmissibility they may be modified to
C(ka) = max] C(ka)" 0] (3.9)

which of course makes the estimate non-linear and hence awkward to study

mathematically.
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Time-Averaged Moment Estimates
It is intuitively clear that, so long as Subunits remain on the arc, an improved estimate
should result from an appropriate averaging process. One such is to simply average all

past estimates with equal weights: if PRT is currently jA then

(3.10)

the latter recursive update formula is convenient.

An attractive alternative is the exponentially weighted moving average (EWMA):

C(ja)=al(ja)+(1-)C((j-1)A), 0<ea<l. (3.11)
This estimate, e.g. with a=1/3, automatically and mechanically reduces dependence
upon the past in a way that the unweighted average, C, does not. It does so without

regard to the relationship of the most current estimate, é( JjA), to the immediate past, so it

may be slow to adapt to events such as abrupt changes in arc occupancy, or to trends in
time (adaptation comes by modifying « as a function of recent radical changes in C’( JA);
details remain for new work). But its simplicity and computational convenience cannot be
denied or improved upon.
Utilization of the Estimate in Model Context

Within an evolution of the model it will be a simulated sequence of estimated
C-values, i.e. either C(jA) or C(jA), j=1,2, ..., that will be presented to the analyst
who guides one side’s actions. Corresponding estimates must be introduced into
algorithms that govern the opponent’s behavior. These present estimates may be
augmented by information as to the likely range of force-size (C-values) consistent with
the estimates, and by further information concerning Subunit types; all such information

elements or perception components are explicitly modeled as afflicted by (realistic) error
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to some degree. The analyst will then make decisions concerning future moves, e.g. by
Blue, in the face of the perceptions so delivered.
Option 2: (Quasi) Likelihood Estimation

Likelihood methodology is an alternative approach to combining information from
previous observations. The awkward form of the likelihood function associated with the
current Markov model for Cp(kA) leads to use of a moment-matched Normal
approximation or quasi likelihood, see Nelder and McCullagh (1983). Assume then that

C(kA) has approximate conditional density

CXP{"%[Ck - (ck-lpDD +(C~cra)prn )]2 / o %}

\/ 270k

flekse-1;C) =

(3.122)

where

o% = ci-1pop(1- ppp) +(C~ cx1)p1o(1~ pip) (3.12b)
and c; and cj-1 are the observed counts at times kA and (k-1)A respectivély. Now the
likelihood function for unknown (but presumed constant) C is

J
L(C, j;data) = | f(cx;¢x-1,C). (3.13)

k=1

Rearrangement puts this in the form

; e—%[ck—ck-l(PDD‘PLD)"CpLD]z/ °§~1

J
L(C,j;data)=
( ) H '\/Zﬂ'o'i_l

(3.14)
o Hei—er(poo=peo)}-Couo' /5 -1 ~He-ci-r(pon-puo)-Couo] [}

\/ 27ro~§ k=1 \/ 27os_,
Of course oz depends upon the unknown C, but also upon all previous observations. We

propose to iteratively update the approximate likelihood estimate of C as follows:
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(a)

write the likelihood up to (j—1)A in the normal form

e/

L(C,j-1;data) = (3.15)
\/ 2z T:}_]
This replaces the product to j—1 on the right-hand side of (3.14);
(b) complete the square to calculate the likelihood up to jA in the form
o HCmY/7
L(C, j;data) = (3.16)
2z 2'3-
where
(,Uj—l/Tf'-l)"‘[(Cj _cj—l(pDD _PLD))/pLD]/(a:i'/pIZ.D)
Hj= 5 =7 (3.172)
1/1'j..1 + 1/(Uj/pLD)
and
2 =1/(/73 + 1(33/pho)) (3.17b)
where 3 = ¢;.1ppp(1- ppp)+ max{(,u j-1=¢j1)po(1- PLD),O} :
Since 0':}_1 depends upon the unknown C-value, replace that value by
-1, available at (j—1)A; actually it is best to apply the formula (3.12b) altered to
replace C—cj.; by max(yj.1—¢j.1, 0). This permits a numerical value for 4 to be
calculated; clearly this process may be iterated.
(c) The above expresses uncertainty about C in a Bayesian style, effectively attributing

to C a density with mean 44 and variance ri- at time jA. Observe that y; actually is,
as written in (3.17a), a linear combination or weighted average of the most recent
moment estimator, C‘D( jA), as in (3.8), and the most recent point estimate, /..

The form is exactly analogous to the exponentially weighted moving average but
with the weights determined in a systematic manner, i.e. updated by use of the
estimated variance of the observations and the (approximate) model. Additionally
there is the build-in assessment of the variability of the estimate furnished by 75.
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(d) The above setup can be made adaptive to changes, e.g. of arc content, by
discounting the older likelihood. This leads to scaling up rf-_l by a factor Kz > 1: in

(3.17) simply replace r?-l by K,grﬁ_l. Clearly more weight is now placed on the
current estimate.
Option 3: Maximum Quasi-Likelihood and Laplacianized Quasi-Likelihood
An alternative to the simple iterative procedure of Option 2 is to collect all of the
C-dependent terms of the quasi likelihood function (3.12) into the exponent:
o(C)=

—%[Ck ~(ce-1pop +(C-ci1)pip )]2

I (3.18)

ce-12o0(1- ppp) +(C - 1) pro(1- pro)
1
-3 ln[ck—lpDD(l —pop)+(C- ) pro(l _pLD)]'

Now minimize Q with respect to C so as to maximize the likelihood: differentiate with
respect to C, set the derivative equal to zero and solve the resulting quadratic for the quasi

mle; tedious algebra gives the result

N

~b{)+ {max((8(k)" - 4a(k)d(k))0)}

0 (3.19)

Con (k)=

where
a k =pLL( )3
b

Ck = Ci1| Pop — (I"PLL)]l

)
k)= [PLL( PLL)] +2(1"‘pLL)ZCk—1PDD(1_pDD)
)=
d k)

(
(
(k

(k) =~{2(1- prs)exrPop(1- pop)x(k)
+pus(1=pue J¥(k)* = pus(1- prc)e-1pon(1- poo)|

The second derivative can be calculated and hence the approximate variance is

(k)= (k)" % |- pez) (k) + 0] pus (1 Pz )]2]'1 (3:20)
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where v(k) = pr(1- p1)Con (k)+ck-1pop(1= pop).
If Con (k) is now treated as normally distributed with the above parameters Cyy (k)

and oﬁﬂ(k) its contribution can be incorporated into an updating procedure analogous to

that of (3.14) - (3.17).
An alternative to the above procedure is to treat the quasi likelihood as a density for

C, treated as a random variable a la Bayes. Rewrite (3.12) as

-1(c-C)/(ac+b)

g(C;data) = k& (3.21)

27zaC+b

where € is an abbreviation for €p(A)* or Cp(kA)” as in (3.7), and a and b depend on

data ¢ and ci1, and parameters ppp and prp.

(a) nommalize, by determining K so that the approximate density

o -Yc-E) flac+b)

; e
K dC=1 3.22
{ V2zJaC+b 22

approximately, using Laplace’s method; cf. Tierey and Kadane (1986); do so by writing

the integrand as e2(C), with

1

0(C)= —%(C— &) flac+5) ~in(aC+2) (3.23)

and determine the minimizing value of C and the second derivative at that point; this

leads to

] (-G fota B
o N2

i

1 (3.24)

from the previous development.

K ~(1/yJore Je 2.
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Similarly,

E(aC+b)=|(aC+b)g(C;data)dC (3.25)

S8

can be approximated using Laplace’s method by Writing the integrand as a Q,,(C) with
On(C)= —%(C—C,,,)z /(aC+b)+%ln(aC+b) (3.26)

and determine the minimizing value of Cy, C’m and the second derivative at that point.

This leads to
E(aC+b) K2\ P)[o, = &relon) 2 752, (3.27)
=L,
where
P -1
ol = {EC-Z-Q,,,(C,,,)} . (3.28)
In a similar vein
E|(aC+b)’|= [ (aC+ ) g(C: data)dC (3.29)
0 ,
which can be approximated by writing the integrand as ¢?(©) with
1 2 3 ‘
0(C)=-5(C-G) /(aC+b)+51n(aC+b) (3.30)

and determine the minimizing value of Cy, éy , and the second derivative at that point.

This leads to

E[(aC+b)2] ~ KeQV(éV)\/; = eQ"(é”)'Q(éML) /o',Z//O'%WL

ELV

(3.31)

where
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-1
ob = —[%Qy(éy)} . (3.32)

An estimate for C can be obtained from (3.27)

C, = In=b (3.33)
a

An estimate for the variance of C can be obtained from (3.31) as follows.
Ly ~ B|(aC+b)} |= a®E[C*] + 2abE[C] +5*.
Thus,
_ A2
E[Cz] N Ly 2aszL b
a (3.34)
Var[C] ~ ([LV - 2abéL —bz]/az)— C'I%

If C‘L 1s now treated as normally distributed with the above parameters C‘L and
variance Var[C] its contribution can be incorporated into an updating procedure
analogous to that of (3.17).

Option 4: Numerical Integration of a Posterior for C Based on Quasi-Likelihood

Aﬁ alternative that is of strongly Bayesian flavor begins with the quasi-likelihood
expressed as a density for C, i.e. (3.21), and numerically integrates to find E[Clck, ck-1]
and Var[Clcg, ck-1]. Following this, it performs the iterative update 4 la (3.17). These are

the steps:
(a) normalize (3.21), i.e. determine K so that
© e—%(x—é)z /(ax+b) :
K[*—— lax+b)dx =1; (3.35)
o 27(ax+b)

where 1(ax + b) =1 if ax + b > 0 and is O otherwise;
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(b) numerically integrate to obtain

E[Clex, e 1]=K°fo 1(ax +b)dx ; (3.36)
T Ty J2a(ax+b) ’ '
and
(c) numerically integrate to obtain
w  Hx-6) flax+b)

E[C?lee,cum| = K[ 222

—_— ] b)dx . 3.3
5 27(ax +b) (_ax+ )& G-37)

(d) Convert the latter numbers into a value for the Var[C].

(e) Apply (3.17) to update.

4. Sensor Models Revisited: Binomial, Multinomial, and Generalized

This section reportsv models for déscribing the output of imaging semsors in an
operational context. They are applied in certain simulation (Monte Carlo) models
(JSTOCHWARS/TWAEPS) to represent detection and (mis) classification of entities
(enemy vehicles) on the surface of the earth from points above it, where these observation
points can either be fixed in place (hovering) or in motion.
Basic Idea

A sensor’s view of the earth surface is limited to a spatial region thereon; call this the
Jootprint; in JS this is over an arc, or a node, but in reality is a (two-dimensional,
sometimes more) region. The footprint can be virtually stationary, or can move in search
of new opportunities. An image of the footprint elements detected by the sensor is
portrayed on a screen. It is initially assumed here that, if there are C (generic) items
(potential targets) on the surface (such as tanks, other wheeled vehicles, trucks) detectable
by the sensor system, i.e. in motion for some (e.g. J-STARS), then these are seer on a

glimpse or scan with conditional probability p (and not seen with probability ¢ = 1 — p);
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the events of seeing on successive scans are conditionally independent. Alternatively, a
picture is on the screen, but the scan or glimpse is a time of residence of an operator
foveal image over a subregion of the screen. Items within that subregion are candidates
for operator attention (mis)identification, and communication towards weaponeers. The
physical conditions that affect the probability of detection are (a) terrain, or sea state,
including vegetative coverage, (b) the (radar) cross-section of vehicle types of interest;
same for infrared, heat detection, (c) state of motion, or hiding, (d) action by enemy (Red)
entities, such as combat/attack by them that facilitate detection, such as SAM site
radiation during air defense (AD) activities.
Models

An initial model is that R, the random number of entities (e.g. potential targets)
revealed or detected on one sensor scan/glimpse is binomially distributed, conditionally
on environmental factors. Likelihood and moment estimators approximately provide this

simple estimator of C,

C=

4.1)

p(*)
where e signifies explanatory variables. A candidate parametric model for this

dependency is the random hazard (or variations thereof, to be described); see Gaver

(1963),

p(v, &)= ") (4.2)

I
where In py(y) = z Biv; , aregression term.
i=0

The vector variable v = (v}, v, ..., V,) is one of observable explanatory variables such as
range from sensor to target region, terrain type, cross-section of targets, atmospheric
properties, etc. The (possibly vector) variable £= (&, &, ..., &,) describes random

environmental fluctuations; these may be common to several, e.g. consecutive, sensor
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scans because of cloud cover. The coefficient vectors B can be estimated from data, and
modified for sensitivity checking purposes. The idea is that a sensor output is modeled as
the outcome of C biased (not mecessarily % — %) but independent coin flips with
probability of success simultaneously influenced by spéciﬁed explanatory variables. The
advantage of such a regression model is that it can be fitted using observations made
under different conditions, i.e. on different target types, with different ranges, terrain
types, i.e. by pooling data to estimate the regression coefficients 3. There are standard
computer programs for carrying out maximum likelihood calculations. Then the
expression, €.g. (4.3) can be used to predict the actual number of targets present.

Notice that the estimate now has the form

C(v,e)= > (f 5 (4.3)

This is conditional on & so this model has the effect of increasing the observed number,
R, to account for those targets not observed; of course this adjustment is model-
dependent.

Sirice, conditional on &,

E[R | gl = Cp(y, ), (4.4)

the unconditional expectation of R is

E{E[R | €]} = CE[ p(v, 9)] ; (4.5)
so, if we assume the distribution of p(v, £), given the explanatory variable values, v, is

well-enough known, an unbiased (approximately!) estimate of C is

__RrR
E[p(v.2)]

To obtain a numerical estimate, having observed R at ¢, R, = r,, we write

C= (4.6)
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6=t
t E[p(y,,e,)]

where it is being assumed for the present that {g} is a sequence of independent random

(4.7)

variables with “known” distribution.

Note that we are allowing here (modeling) a situation in which all observers are
simultaneously affected by a chance event, such as cloud cover. We are not (yet)
representing adaptive action by the sensor-carrying platform, such as flying below the
clouds (not always possible), or using different sensor technology, e.g. IR.

Variance

The estimate at time #, given by (4.7), is an instance of a random variable, (4.6).

Conditional on &, and using the binomial model,

E[Rle.]  Cp(v,.&)

E[p(v,.e.)] E[p(v,)] (4.8)

E[é,[s,] =

whose expectation is the true value, C.

Consider the variance of f’, , a measure of the variability of é, around C, the true
value. Note that this assumes just one glimpse “at C” while a given g is present, if &

remains the same for several glimpses the model must reflect this, and can. First,

Crlve)1-P6)

(Elp(v-)])

Var[é,|8,] =

It is known that, unconditionally,
Var[é,] = E{Var[é, |£,]} +Var, {E[é, |8, ]}

C(E[p(Yt ,81)] - E[pZ(z,,az )]) + CzVar[p(gt ,gt)] | 4.9)

(Elp(v,,2.)])

In order to compute an estimate of the variance replace C by C asin (4.6) or (4.7).

32



Analytical Model for Detection Probability, p(y, &)
A candidate, and convenient, parametric analytical model is the following; described
in (4.2):
pv.e)= exp[—s(— In po (g))] (4.10)

where we can let

i=1

14
~In po(v) =exp|:ﬂ0 +y ,Biv,-] = exp| Bo + BY]. (4.11)

Note that one can explicitly evaluate all expectations in (4.9) for distributions whose
Laplace transforms are available; this is a wide class that includes the gamma, positive
stable, inverse Gaussian, and many others, including convex mixtures of the above. We
give only the gamma example.

Gamma. Here

E[e**]= 1/ (1+ls)a, a>0, (4.12)
a

and E[e] = 1, Var[&] = Ve

The correction factor for the mean in (4.7) is seen to be

E[p(v,8)]= 1/ {1 ¥ ée(””zf"‘“)]a (4.13)

which, for =1, is just a logistic regression function; other values of a>0 simply
generalize the model, possibly usefully. By simple analogy terms occurring in the

variance are evaluated

E[p(v.8)] = 1/ [1+le(”°*£¥)2]a ; (4.14)

(24

Var[ p(s)] =E [ (v 3)] - (E [ plv, 8)])2 can be evaluated using (4.14) and (4.13).
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Explaining Variability Alternatively

The previous model allowed for variability in detection probability to be represented
by deterministic explanatory/regression variables, v, and the initial binomial model to be
extended by additionally randomizing simultaneously all conditional detection
probabilities on a scan{ glimpse. This device can be used to represent the effects of
simultaneous random environmental variations unexplained by regression.

An alternative possibility is to explain variations between potential targets (e.g.
because of different orientations or partial cover) by randomly introducing an g-effect for
each target; an independent and identically distributed assumption is convenient and
parsimonious. This approach will be pursued in later work.

Now describe the occupancy of a node or arc, denoted by n, by the numbers of units
of different types (e.g., heavy armor brigades, light armor brigades, etc.); Ui(n; ?) is the
number of such units of type i (=0, 1, 2, ..., I) at time ¢ at node n; Uy(r; £) can designate
the empty node if necessary.

Within a unit of type i, there may be several asset types, such as tanks, armored
personnel carriers, etc. Assets may also refer to subunits (sunits) such as tank companies.
Agree that distinguishable assets occur in J classes, and that a unit of type i has a mean
number of assets of type j (j =1, 2, ..., J) equal to ajj(n,t), and a variance 0'{;" (a;n,t). The
initial values of the mean number of assets of type j for a unit of type i may be taken from
the Table of Organization and Eqﬁipment (TOE) for that type of unit. Furthermore, adopt
the provisional model that the actual number of assets of type j possessed by a particular
randomly selected unit is a random variable, A(i,j, n, ) with distribution function
Fij(x; n, £). When convenient, and for illustration, we take Ai(i, j; n, ?), k=1,2, ..., U;,

1.e., the numbers of assets of type j owned by the U; copies on Node n to be independent

and normally/Gaussian distributed. The time-dependent parameters a;j and 0{;)7 can reflect
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the fact that a campaign has been in progress for some time and attrition has occurred and
is subject to change. Let

Ui

A(i, jon,t) = A(i, j,n,t)

e=1

denote the total number of assets of type j possessed by units of type i at node # at time ¢.
It is convenient to refer to the vector of distributions of typical asset-type numbers for

a particular unit type as the signature (or asset signature) of the unit type. Note that
signatures of different individual units of the same type will inevitably differ if their

various asset counts differ, as could well happen. Let

Ui

1
j,nt =Z Agl],nl‘
i=1 ¢=1

the totél number of assets of type j at the node at time ¢.

Finally, let Sj(s, n; £) denote the total count of assets of type j by sensors of type s
(s=1,2,...,5) at node n at time ¢. S; represents the quantitative perception of the
opponent’s type j asset level.

In this section and the next two, we present and more thoroughly investigate models
for sensor observations of assets present on nodes or arcs that are based on the binomial
and multinomial distributions. We consider the behavior of approximate procedures for
updating the estimate of the number of units or assets on the node/arc using the binomial
and multinomial observation models. The procedures are based on approximating the
sampling distribution of the estimate of the number of units by a normal distribution. The
paper by Hall (1994) gives some insight into when these approximations may be
appropriate, but their convenience for the purpose of minimizing computation time is of

overriding concern in the context of a computer model.
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4.1 Combining Binomial Observations

A model for two independent observations of a unit with r assets by two different

sensors is as follows. Let X7 and X, be independent random variables having binomial

distributions with common number of trials » and success probabilities p; and ps. The

problem is to estimate » from observations xj and x.

4.2 The Likelihood Approach
The likelihood function is

L(r;xi,x) = ﬁ(r }pf"(l-—p,-)r_x’ .

i=1 \ X;

An approximate maximum likelihood estimate for  can be obtained by solving

L(r;xi,x) 1
L(r—-l;xl,xz) B
for . This results in the equation
—(1-p)——(1-p2) =1
r—x P ¥ —X3 P2 .

Thus, 7 satisfies the quadratic equation

P[1-(1- pr)(1- p2)] - (3 +x2) + 112, = 0.

4.15)

(4.16)

(4.17)

(4.18)

If there are 3 observations a similar argument would result in r satisfying a cubic

equation, etc. We get an (approximate) maximum likelihood estimate, with the good

properties of the m.l.e., but must solve an awkward equation. This may not be a problem

for a small number (especially one or two), but if many must be done quickly, it may be.

We look for an alternative.

4.3 A Moment Estimator and the Normal Approximation

The moment estimator for 7 is seen to be
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hi= & (4.19)
Di
Note that
E[f]=18 =, (4.20)
Di
and so # is unbiased, as it was designed to be. Further,
Var[7] = —Var[X,]= r"p"(lz_p") _nll=p) 4.21)

Di Di Di

Approximate the distribution of # by a normal distribution with mean u(i)= X and
pi

variance v(i)2 =x;(1-p;)/p? ; if x; = 0 then set w(i)*> = v >0 where 1§ is chosen by the
analyst. To obtain a combined estimate of 7 from A and 7 take the weighted average

with weights the inverse variances:

~ ~

n n
2 2
7= M (4.22)

A7

The estimated variance is

-1
n2 1 1

- . 2
o [v(l)z + v(2)2] (4.23)

Figures 15 — 17‘present results of a simulation experiment with 499 replications. For
each replication two independent binomial random numbers are drawn, each with 20
trials and one having probability of success 0.5 and the other having probability 0.9. In
each replication, the estimate obtained by solving (4.18) is computed and the estimate
(4.22) is computed.

Figure 15 displays a histogram of the differences of the likelihood estimate and

moment estimate. Note that the likelihood estimate tends to be somewhat larger than the
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moment estimate. Figure 16 (respectively 17) displays the histogram of the likelihood
(respectively moment) estimates. The moment estimator appears to give satisfying results,

although likelihood is probably superior.

4.4 Approximate Normal Updating Using Binomial Observations

Let the current estimate of the number of subunits or assets on a node, #, have a
normal distribution with mean g and variance o2. Suppose a new binomial observation,
Xp+1, arrives with parameters 7 trials (there are, and have been, r units present) and

probability of detection p. We assume the updated estimate has a normal distribution with

mean
He " xt+l/P
ol Vi
M1 = 11 (4.24)
—— + RN
or Vi
and variance
-1
1 1
0'27'+1 = l:—{'f‘ 2 ] (4.25)
Or Vini
where

Xe+l (I—P)/pz if x4 >0
Vi, = (4.26)
Ve if X1 =0
where v§ is a constant chosen by the analyst.
Note: the above algorithm is only appropriate if the latest observation is of (about) the

same number of units as the earlier ones: not much has changed. But changes will occur

and must be detected so the above is only a beginning.

38



5. Beta-Binomial Observations and Their Combination
One generalization to the simple binomial model of Section 4 is to allow the

probability of detection p to be random with beta distribution having density function

a-1(1 _ _\B-1
pPU-p) ifo<p<l
flp)=3 Bla.f) (5.1)
0 ifp<Oorp>1
where
I'a)lr
B(a,p)= M . (5.2)
T(a+p)
The beta random variable has mean m= @ and variance
a+pf

Vi = a,B/ [(a+ ,8)2 [(a+ ,6)+1]] . The purpose of this generalization is to recognize

variation in the actual probability of detection, p: make p arandom variable.
Let X be a random variable whose conditional distribution given p is binomial with
parameters r trials and probability of success p; now additionally suppose p has a beta

distribution with parameters « and 8

1 [M\r(a+p)T(a+x)T(N-x+p)
PiX ==} ‘(xj T)C(BT(N+a+p) ©3)
An estimator for 7 is
P (5.4)
m
E[#]= E[E[#lp]|= —’i—E[rp] =r. (5.5)
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Thus, 7 is unbiased. Next, evaluate the variance:
Var[f] =F [Var[fl p]] + Var[E [f] p]]

i R, I

m

r aff r?
-7

W af (5.6)
m* (a+p+l)a+p) m* (a+p)(a+p+1)

r

=;17(a+ﬂ)(aaﬂ+ﬂ+1)[l+(“:ﬂ)}

In summary,

Var[f]=;%v§[(a+ﬂ)+r]=rz(aTﬂﬂ:ﬁ[a+ﬂ+r].

Notice that this estimate depends quadratically upon the unknown 7, rather than linearly
as in the plain-vanilla binomial case.

5.1 Approximate Normal Updating Using Beta-Binomial Observations

Assume the current estimate of the number of subunits on a node, r, has a normal

distribution with mean g and variance o?. Suppose a new beta-binomial observation,
Xy+1, occurs.

The estimator for r using Xy+1 is 741 = X,1/m and we approximate its variance by
2

1’1\;.;.1 =7";+1 ﬂ[a+,3+f,+1]/a(a+ﬂ+l) if x;4; >0and 9,2.,.1 =v§ ifx;+1 =0.

We assume the updated estimate has a normal distribution with mean

t 7:;+l

s B
Uiy = O: Viy
1+ 1 . 1
272
Or Vin

(5.7)

and variance
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-1
11
0',2+1=[—2—+ > ] : (5.8)

5.2 Maximum Likelihood Estimate for the Number of Trials, r, in which the
Observations are iid Beta-binomial
Let X1, ..., X; be independent beta-binomial random variables with parameters 7 trials

and beta parameters o and f. The likelihood function for 7 is

() Z[l"(r -x; +f)
H(r—-xi)' r(""’a'*'ﬂ)t .

1
i=1

Li(r;xiye.sx) =K

(5.9)

The maximum likelihood estimate is that integer » which maximizes L;. An approximate

solution can be found by détermining that  such that

Li(r3x1,ee e, ;)
Li(r-1,x1,...,%)

~1.

For ¢t =2, for r > max(x1, xp) + 1

Li(ryx,e..,x;) _ 2 (r—xi+B-1)(r-x, +,B—1). (5.10)

LI(r—-l;xl,...,x,) (r—xl)(r—xz) (r—1+a+/3)2

Setting the ratio equal to 1 results in a cubic equation for ; the minimum solution larger
than max(X;) is selected as the reasonable point estimate.

Figures 18 and 19 display results of a simulation experiment with 99 replications.
Each replication consists of 2 independent beta-binomial random numbers; the binomial
number of trials is 20 and the parameters of the beta distribution are =5 and g = 2.

Figure 18 (respectively Figure 19) displays a histogram of the moment estimates
(respectively the maximum likelihood estimates). Note that the moment estimate is much

more variable than the maximum likelihood estimate.
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5.3 Common but Random Probability of Detection

Assume X1, ..., X; are conditionally independent binomial random variables given p
with 7 trials and probability of success p but p has a beta distribution with parameters «
and . Randomization of p common to all sensors could represent a common effect on

them all, e.g. by weather, or cloud cover, or perhaps terrain variation. Then

P{Xl =X],X2 =x2,...,X, =xt}

| e+ |0 pe Y- (5.11)
10 )|ty i hlr(c):(if)l( )j‘

j=l

Thus, the likelihood function for 7 is of the form (X an arbitrary constant)

B o ) R

For r 2 max(x;)+1 and =2

L(r;xl:"-7xt+1)

L(r-Lx,...,x)

(5.13)
_ r? (r—xi+r-x+ B-1)(r—-xi+r-x; + f-2)
_(r—-xl)(r-xz) (2r+a+/3—1)(2r+a+,6’-—2)

Setting the ratio equal to 1 results in a quartic equation for r which can be solved
(numerically); the minimum solution greater than max(x;) is the reasonable one.
Numerical stability concerns suggest that the logarithm of the likelihood function be
computed and Stirling’s formula (cf. Feller [1968]) be used to approximate the gamma

functions; that is, compute
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f(r;xl,...,x,)=gln(]g)+{ﬂ+IZ(r—xi)~—;—}]n[ﬂ+lZ(r—xi)—1]

—E,B+IZ(r—x,-)—1il

_ra+ﬁ+tr—%:lln[a+,8+tr]+[a+,6’+tr—l]

=‘téln[:j)+[ﬂ+;(r—x,-)—%}lnl:,3+12(r—x,-)—1]

Jj=1
1
_[a+ﬂ+t —E]ln[a+ﬂ_+tr}+K

where K does not depend on 7.

Figures 20 — 23 report the results of simulation experiments. For each replication one
random number, p, is drawn from a beta distribution with parameters « and f. For the
experiments reported in Figures 20 — 21 (respectively Figures 22 — 23) two (respectively
10) independent random numbers are then drawn from a binomial distribution with 20
trials and common probability of success p. Conclusion: for cases considered, the
moment estimator appears to be an adequate approximation to the maximum likelihood
estimate. Note that, as mentioned earlier, the above Beta binomial model represents extra
variability common to sets of binomial probabilities (of success). The present Beta
binomial does rnot represent any extra binomial randomness between the outcomes of

successive looks at the same unit by the same sensor (within variability).

6. The Many-Unit Type (Multinomial) Misclassification Problem

We next present a more realistic version of the models considered earlier in this
report. In an actual operating environment there is presumed to be a mélange of different
observables: members of several classes of different subunits, such as tank companies: #;

subunits of type i, i=1,2, .../ in a specified part of the theater (on a given arc or at a
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given node). Assume that each subunit type has a probability of being detected on a
sensor pass or observational opportunity; let this be d; for subunits of type i. Furthermore,
once detected the subunit is assumed correctly classified with probability c¢;;, but
incorrectly so, and to one of the recognized classes, with probability ¢, j#i. It is
optimistic, but convenient, to assume that c;; ~ 1 and c;;, j # , is close to zero; this will
not always be necessary but can be a useful start at times. An overly simplistic way of
handling the misclassification problem is to simply assume that the probability of
misclassifying i to j # i is a small constant.

Note that each of the above parameters is likely to be specific to sensor type: di(s),
&ij(s), letting the sensors be classified as of type s=1, 2, ..., S. And, during a particular
(e.g. 2-hour) reference time period the number of opportunities that a given sensor has for
“seeing” a unit of type i at a given location will vary depending upon the action(s) of the
subunit(s) and the number of passes the sensor makes over the particular region under
examination. This will be a programmed quantity and will be known. The actual
detectability of a subunit, i.e. as influenced by the subunit present where looking occurs is

unknown and must be estimated.

6.1 Model
Begin by considering one pass by a sensor over a region (e.g. arc). First, carry out
detections: let D; be a random variable denoting the number of detections of (sub)units of

type i; if desired specify Dj(s). Assuming sampling with replacement is adequate,

D; is Binomial (r;, d;). (6.1)
We assume that D; is not directly observable. Of course there is identity information
inherent in what different sensor types see: if sensor type 1 can only see subunit type 1,
sensor type 2 can only see subunit type 2, then if d; = 10 and dp = 0 it is clear what fypes

of subunits are present.



Next, classify all of the detections according to the probabilities c;;. Consequently
each of the D; (anonymous) observations is independently identified with some class j,
where j=1,2, ..., 1. Thus r;, the unknown number of type i subunits gives rise to a

multinomial distribution of numbers of values Xij

k C
P{Xi = xi1,Xi2 = Xiz,e» Xt =xy}= pr" 1-d;)" _,gl Y (6.2)
Xilse oo XiI ) j=1

where p;; = djcj;.

But what can be observed is, say,

I
Xp=) % (6.3)
i=1

all observations classified as type j. The objective is to turn the above into a reasonable
estimator of 7;, assuming that d; and c;; are known, at least initially. As stated before,
there is useful classification information in x(s), s = 1, 2, ..., S if sensors are differentially
sensitive.
Moment Estimator

Aﬁpérently a relatively quick way of estimating the parameters r1, 72, ..., 77 is to use
the method of moments. This may not be as efficient as other ways, but conveniently
makes low computational demands.

Let Xji(s) denote the number of times a sensor of type s sees a unit of type i and

classifies and reports it as of type j. Then

E [X i (s)] = rd;(s)cy(s) = npy(s) . (6.4

Now X(s)= > Xj(s) models the actual observed data xi(s), so the method of moments

i=1
puts
I
s)=>rpg(s)  j=12,....I. (6.5)
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In matrix terms
x(s) = rp(s) (6.6)
so, if the inverse exists
£ =x(s)p7'(s) 6.7)
This is directly analogous to the previous scalar setup. But a solution of I simultaneous
equations is now required. Notice that ZI: pi(s)=di(s)<1.
j=1
Approximations
The solution offered above may be statistically somewhat inefficient (use of moments,
rather than likelihood or Bayes) and is also computationally troublesome. Here are some
approximations; these are tentative and will be checked by simulation. They are based on
the assumption that pyi(s), j # i, can often be expected to be much smaller than pii(s). If
not, then we are sometimes led to say, skeptically, “I have just seen a goat, but I know
that the other side always dresses sheep like goats, so I will treat this as a sheep.” Such is
related to decoy and deception issues, but also to imperfect Battle Damage Assessment
(BDA), and to occurrence of false targets in general.

Assuming the above to be true we can plausibly estimate r; initially by the first

(naive) estimate:

A1)y _ i (S)

7(s)= __p,-i ) (6.8)
The model for this is

4 (S) = Pii(s) (6.9)
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Now take expectations:

(6.10)

Now since py; << p;; the second term can well be small (unless r; >> r;). So a possible
way to correct (and improve) the initial estimator is to approximately remove the
estimated bias, i.e. compute the second estimate:
72(s)= max[o,f,.“)(s)-zf,f‘)(s)&(ﬂ), (6.11)
ki pi(s)
It might be worth iterating this to obtaiﬁ ﬁ(?)(s) , etc., but this step will not be taken. To

obtain an estimate for the variance of r( )( ) , nhote that

Var[ ] er] [1 pJ ]

which can be estimated as

Var| X;(s)] = éf-}z’(s) Py (s)[1- ps(s)] (6.12)

for example.
Approximately,

puls)|

Dpii(s

(6] v 6]+ Sraf ] 2

k1

~—
| ——

(6.13)

. sz\r[X i(s)] 5 Var[X k (s):”— Pri(s) }2;

pi(s) i Ph(s) Lpa(s)
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if Xj(s) = 0 set Var[Xi(s)] = vo where v is chosen by the analyst. Of course this last is ad

hoc; its properties are best understood by use of some simulation.

6.2 Approximate Normal Updating Using Multinomial Observations

Let the current estimate of the number of subunits of type i =1, ..., I on a node, 7,
have independent normal distributions with mean s(i) and variance o7(i). Suppose a
new multinomial observation Xy arrives from a situation with parameters 7;, Dpij(s), for
i=1,..,Tandj=1, ..., I As usual 7 is unknown, but p;(s) is assumed known.

We assume the updated estimators have independent normal distributions with means

2/ 2 .
RGOS EI(LV’—{Q 6.14)

and variance

O',2+1(i) = -I——T (615)
20 VAal)

where 7 is an estimate of 7; and v, (z) is an estimate of the variance of 7 . The estimate

of the variance uses (6.12) — (6.13).
A Simulation Experiment

In this section results of a simulation experiment are reported.

In each replication of the simulation two multinomial random numbers are generated.
Each has number of trials (r1, r2), probabilities of detection (d], d) and probabilities of

classification (c11, €12, €21, ¢22). The observed data are
Xi(L;s) = X11(1;5) + Xa1 (1 8); X1(255) = X11(2; 5) +X21(2;5)

and

48



Xz(l;s) = Xlz(l;s)+X22(1;s);X2(2;s) = X12(2;s)+ X22(2;s) .
Two procedures for combining the two observations are considered. In one, called

Average, the average of the two observations is computed and the estimate (6.11) is

computed using the average X;, X, where

X =[x1(Ls)+ Xi(2;5)]/2.
Figures 24 and 25 present histograms of the moment estimate using one observation
(X1(1; 5), X2(1; 5)) obtained by solving simultaneous equations (6.6) and histograms of
the approximate moment estimate (6.11). The two estimates appear to be reasonably close

with the approximate moment estimate being slightly lower. Table 6.1 presents statistics

for the simulation results.

Table 6.1
1 observation
d1=0.7,d2=0.9,c11=0.8,c12=0.2,¢c21=0.1, c22=0.9
500 replications: r1 =10,r, =15

Mean Variance of
Proc of Estimates Estimates
A 7 A 7
Simul Eqtn 10.3 14.8 148  7.34
Approx 10.0 14.4 14.0 6.9

Figures 26 — 27 present histograms of the estimates resulting from the approximate
normal procedure for combining two multinqmial observations (X1(1;s), X2(1;s)),
(X1(2; 5), X2(2; 5)); the estimates of 7; combined are those resulting from (6.11), (6.12),
(6.13), (6.14), (6.15). The figures also present histograms of first averaging the two
multinomial observations and then applying estimator (6.11)— (6.13). The two
procedures appear to yield comparable histograms. The estimated variances are computed
using (6.13). The mean of the estimated variance is always smaller than the variance of

the estimates. Table 6.2 presents statistics of the simulation results.

49




Table 6.2
2 observations
d1=0.7,d,=0.9,c11=0.8, c12=0.2, c31 =0.1, c23 = 0.9
500 replications: r; =10, r; =15

Mean Variance of Mean of
Proc of Estimates Estimates Variance
Estimates
A 2 A ) A 2
Ave 98 14.7 6.1 3.6 5.8 2.8
Normal 94 14.9 6.7 6.0 5.7 4.9

Table 6.3 records statistics from a simulation with 500 replications. For each estimate in
areplication the following confidence interval is computed: [fi =2JVarr,, . +2Varr ];
this confidence interval should have coverage at least 95%. Table 6.3 records the fraction
of confidence intervals which cover the true value of r;. Note that the fraction tends to be
a little smaller than 0.95.

Table 6.4 reports results of a similar simulation but one in which ;=5 and », = 8.
Note the fraction of confidence intervals that cover the true r; tend to be smaller than

0.95. This behavior is due to the greater likelihood that the estimate of 7; is 0.

50



- Table 6.3
Statistics of Simulation
d1=0.7,d2=0.9,c11=0.8,¢22=0.9,c12=0.2, 31 = 0.1

500 replications
r1=10,rn =15
No. Type Estimator Mean of Est  Mean of Fraction of intervals
of of (Std Dev)  Est Std Dev [;i +2.[Var ] that
Obs  Unit
covers true value -
1 1 Approximate 9.8 0.93
Moment (3.5) (3.4)
2 ' 14.8 1.0
2.7) (6.6)
2 1 Normal Updating 9.6 0.93
' with Approx (2.5) (2.4)
Moment est.
2 14.4 0.94
(2.3) (2.2)
2 1 Average obs. first 9.9 0.96
then approx 2.4 (2.4)
Moment Est
2 14.5 0.91
(1.9) (1.6)
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Table 6.4
Simulation Statistics
r1=5r=8,d1=0.7,d,=09, ci1= 0.8, c22= 0.9

500 replications
No. Type Estimator Mean of Est Mean of Fraction of
of of (Std Dev of  Est Std [;',_2 Varf, £ +2 Var;’,-]
Obs Unit Est) Dev
that covers true #;
1 1 Approximate 5.0 0.93
Moment (2.6) 2.5)
2 7.8 1
(1.9) (4.7)
2 1 Normal Updating of 4.6 0.87
Approx Moment est. (1.9) (1.7)
2 7.8 0.94
(1.7) (1.6)
2 1 First average obs. 4.9 0.91
then use Approx (1.9 1.7
Mom. Est.
2 7.8 0.91
(1.4) (1.2)

Observe that the coverage fraction in the above table is nearly always too low, i.e. is not
conservative. Practically, one might simply change from a multiplier by 2 to something a
bit larger, e.g. from the Student’s ¢ distribution.

All of the above could be redone in a Beta-mixed context.

7. Some Approaches to Updating Perception At a Node Using
Information from Neighboring Nodes

7.1 Introduction

Describe the occupancy of a node or arc by the number of units of different types that
occupy the node or arc; the node or arc may well be empty. Since units move along arcs
and nodes, the occupancy of a node/arc changes over time. Each unit may have several
types of assets, e.g. tanks, soldiers, APC’s (Armored Personnel Carriers), etc. and

different types of subunits, e.g. tank companies. A protagonist gains information about
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the node occupancies through the use of sensors which give him error-prone observations.
In an idealistic and theoretical sense it would be desirable for a protagonist in a theater-
level campaign to possess the joint distribution of the types and numbers of units
occupying all relevant nodes, along with their assets, at every node for all times ¢. This
distribution will be influenced by the protagonist’s allocation of sensor assets, by his own
force maneuver as well as by the opponent’s maneuvers to accomplish a planned course
of action.

However, the development of an automated systemic model of a theater campaign
must realistically stop short of a completely integrated joint probabilistic assessment of
node occupancy; computational burdens are simply too great.

Algorithms for updating perception of the numbers of assets/subunits and numbers
and types of units at a no&e, using local information for that node, have been discussed
previously; see Appendix A and Sections 4 — 6. In this section we investigate the
behavior of alternative perception updating algorithms. Some of these algorithms use

mformation from neighboring nodes or arcs.

7.2 The Model

For simplicity of discussion and notation we will assume for the present that there is
one type of unit, e.g. brigade, with only one asset type. Let K(n, ) be the number of units
that occupy node # at time ¢ and let A(n, ¢) be the number of assets or subunits at node # at
time ¢. Assume the prior distribution for the number of assets given the number of units

with no sensor observations is

2
P{ 4(n,0) e da|K(n,0 L(a=ky) } 7.1)

1
F"*mﬁ@{“z‘@—

where yis the mean number of assets associated with one unit and o is the variance of

the number of assets associated with one unit; y is derivable from the Table of
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Organization and Equipment (TOE) for the unit plus any information available
concerning unit campaign experience.

We assume one kind of sensor which counts assets with

P{S eddA(n)=a}= le_m exp{_%(x-r-a) } (7.2)

For illustration purposes suppose there are three nodes.

Suppose it is known that units at node 1 will, after a random time 7', move to node 2
and after a further random time 7%, move to node 3.

The problem is to use sensor observations to estimate the number of units and number
of assets at each node. In general, there will not be enough sensors to observe all three
nodes at all times.

Let the marginal distribution of the number of units on node » at ¢, given all sensor

observations up to ¢ be
n(k;n,t)= P{K(n,t) = k|a11 sensor observations during [0, t]} (7.3)

and let the marginal distribution of the number of assets at node n, given sensor

observations and units be

dFy(a;n,t)= P{A(n,t) eda’all sensor observations during [0,¢], K(n,t) = k}
7.4)
IS SN 15 VRN (
= ﬂvk (n,t) exp{ 2 (a my (n,t)) /vk (n,t)}.

In the remainder of the paper we present algorithms: for updating 7 and F as more

information becomes available.
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7.3 Updating Using Same Node Information
Suppose there is a sensor observation x(n, t + 1) of the assets at node » at time z+ 1.

One can update the perception at node » using only the sensor observation at node » as

follows.
1 1 T
vie(n, +1) =[m+7} (7.5)
: my(n,t) +x(n,t2+ 1)
me(,t +1) = = (n.2)/ ‘i(a) +l (7.6)
vE (n,t)/ala) 7*
1 1 (x(n,t + l) —my (n,t))2

n(k,n;t +1) = Cn(k,n,1)

27 \/12 + Jk (n,2) 2 2+ vi(m?) (7.7)

= Cr(k,n,t)w(k;n,t,x)

where 0 <oafa) <1 is a constant discount value. If afa)= 1, then the procedure is the
same as that in Appendix A and Sections 4 — 6.

If there is no sensor observation of node # at time ¢ + 1, then set
mk(n,t+l) =mk(n,t) (7.8)

vi(n,t +1)=v} (n,t)/ao(a) (7.9)

for a discount constant 0 < ap(a) < 1.

7.4 Updating Using Neighboring Node Perception
Since it is assumed from the combat situation of the section that the units that are on
node 1 will eventually move to node 2, it would be advantageous to incorporate this

information in the updating.
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a. Modifying the Prior of the Distribution of Numbers of Units
One consequence of a Bayesian procedure is that as more evidence accumulates for a
particular number of units at a node, the procedure becomes more sluggish in responding
to a changing situation. One way to overcome this sluggishness is to modify the prior of
the number of units that are at a particular node. Specifically, suppose there is a sensor
observation x(n, ¢ + 1) at node » at time ¢ + 1. Before applying the updating procedure of
(7.5) = (7.7) modify n(k, n, £) as follows. For n > 1
7(k;n,t) = (1- a(p)) m(k;n,t) + o p) {ke;n — 1) (7.10)
where 0 < ofp) <1 is a constant. The constant a(p) may or may not be the same as the

constant discount factor ofa). If n =1 (node 1), then

#(k;n,t) = (1= a(p)) z(k;n,t) + a(p) eo(k)

with
1 ifk=0
o(k) = (7.11)
0 ifk>0.
Then, as before
n(k;n,t +1)= CZ(k;n,t)w(k;n,t,x) (7.12)
where w(k; n, ¢, x) is defined in (7.7).
If there is no sensor observation, one possibility for updating is
ﬂ(k;n,t + 1) = (1 - ao(p)) ﬂ(k;n,t) + ao(p)u(k) (7.13)

where u is a discrete uniform distribution over the possible number of units and
0 < a(p) <1 is a constant.

b. Modifying the Distribution of the Number of Assets

The procedure of Section 7.3 updates the conditional mean, my, and variance, v, of

the number of assets at the node given the number of units at the node is k for all
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possibilities of number of units. It may be advantageous to occasionally reset the

moments of the number of assets to the TOE (Table of Organization and Equipment)

values, possibly reduced by perceived attrition. One procedure to reset the moments is

described in Appendix A.

Another procedure follows. Associate with each node, not only the posterior mean

and variance at time ¢ for k units, my(#) and v} (r) but also the TOE mean and variance ky

and ko of the number of assets at the node given the number of units that are at the

node is k. Let

J(k,n,t) =1

Let

1

0

if the sensor observation at time ¢ belongs to the prior

distribution of the number of assets for & units at
node # at time ¢

if the sensor observation at time ¢ belongs to the TOE

distribution of the number of assets for & units at
node » at time ¢.

7s(j, k;n,t)= P{J = j,K(n,t) = K|all sensor observations during [0, t]} :

Suppose there is a sensor observation x(n, ¢ + 1) = x of the assets at node » at time

t + 1, then a similar procedure to (7.7) can be used to update 7z; i.e.

s (j ksnt +1) = Crey(j,ksn,t)wy(j, ks 2, x) (7.14)
with
expl— (x—mk(n,t)) ifj=1
\/-2_72'\/1'2 RG] 12 7? +V—’Z((';;;) ’
w (. k;m,t,x) =4 (@) (7.15)
1 (x-—k}’)Z i
exXpy——| ———— ifj=0.
m\/rz +k0'§ P 2 [(12 +k0'§) /
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Further,

P{K = klall observations in (0, + 1]} =Y 75(j,kn,t +1) (7.16)

J

(respectively,

P{J = jlall observations in (0, + 1} =370 ksmt + 1)) (7.17)
k
gives the posterior probability of there being K =/k units at node » at time z+ 1

(respectively the posterior probability that the TOE moments summarize the observation

better than the prior moments).
Finally, if P{J = Olall observations in (0, +1]} is larger than some constant o (e.g.

ay = 0.9) one can reset the posterior moments equal to the TOE values; that is

mp(n, t+1)=ky
and
vi(n,t+1)=kol.
In addition, one can modify the prior distribution of the number of units a la (7.10) —

(7.13). For example, for n> 1

Zs(j,k;n,t) = (1—a(p))ﬂj(j,k;n,t)+a(p)zrj(j,k;n -1,¢)

where 0 < ofp) < 1.

7.5 A Minimal Updating Procedure
A minimal updating procedure might always use the TOE values for the mean and
variance of the number of assets and treat the problem of inference of the number of units

at a node as a classification problem.
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In particular, let m(k, n; f) be the estimate of the probability that there are & units at
node # at time ¢ given all the sensor observations up through time z. Suppose there is a
sensor observation x(n, ¢+ 1) of the assets at node » at time ¢+ 1. Modify the prior

distribution of the number of units at the node as in (7.10) — (7.11); i.e.

7 m(k,myt)= (1 - a(p))?z'M(k,n;t) +a(p)7 u(k,n-1¢) (7.18)

forn>1 and

Zu (k1) =(1-a(p))mu(k.1;t) + a(p)eo(k). (7.19)

To compute the estimate of the distribution of the number of units at the node

2
1 exp _l(x(n,t+1)—ky)

)\/2—7;\/2'2 +ko(a) 2 2% +ko(a)’

7 u(k,nyt +1) = C7t pr(k,mst +1

(7.20)

where C is a normalization constant.

7.6 Examples

The example of Section 7.2 is simulated. The random times, 73, i = 1, 2 of occupancy
at node i are independent having normal distributions with mean 5 and standard deviation
1. The standard deviation of the sensor is 7. The TOE mean for one unit =100 and the
standard deviation o, = 10. There is one sensor measurement at node 1 at times 1-7.
There is one sensor measurement at node 2 at times 5-12. There is one measurement at
node 3 at times 10-20. The simulation replication is for a total of 20 time units. The true
number of units is 2. If there are no observations of a node during a reporting cycle, the
distribution of the number of units at the node is a discrete uniform over 0, 1, 2, 3.

The following statistics are collected for each replication. If a sensor observation
occurs at node n, the posterior probability of the true number of units at the node is

collected. Also collected is the posterior mean number of assets, e.g.

a =y my(n,t)x(k;n,t). Finally, the average posterior probability of the correct unit is
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computed over all observations of all nodes over all observation times is computed. Also
computed is the average absolute deviation between the posterior mean number of assets
and the true number of assets at the node over all nodes with observations and
observation times.

There are 20 replications for each simulation. Table 7.1 displays means and standard
deviations of the replication statistics over the 20 replications. The results indicate that
modifying the prior of the number of units as in (7.10) is associated with the greatest
improvement in the updating procedure for the perception of the number of units at a
node. If the sensor observation is very good, with small standard error, there is the
suggestion that resetting the conditional posterior moments of the number of assets to
their TOE values is worthwhile. Finally, the minimal updating procedure with the
moments of the distribution of assets always equal to the TOE values appears to be

adequate.

7.7 More Than One Observation Per Reporting Cycle

In the previous subsections of this section there has been 1 observation per reporting
cycle. In this subsection suggestions for updating procedures with more than one
observation per reporting cycle are given.

Since it is known that the ground truth at a node will change, it may not be prudent to
weight all observations obtained during a cycle equally. Presumably older observations
should be down-weighted.

Suppose that observations xi, x2, ..., xo are taken during a reporting cycle at times 71,
1, ..., to with 21 £ 1 < ... <tp. Observation x; is an observation from a sensor with

standard deviation 7;. The reporting cycle is assumed to start at time 0 and end at time z.
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a. Summarizing the Sensor Observations
One possibility for updating is to summarize the O observations and then use the TOE

classification procedure of Section 7.5 to update the estimate of the probability that there

are k units at the node at the end of the reporting cycle.

Table 7.1

Summary Statistics for Updating Procedures

7 | Smoothing | Smoothing | Posterior | Average of Mean | Average of Mean
Parameter | Parameter | Probability Posterior Deviation of
for Number | for Number Used Probability of Posterior Mean
of Units of Assets Correct Number | Number of Assets
op) ofa) of Units from Correct
(7.10) (7.5) (std dev. over Number
simulation repl.) (std dev. over
: simulation repl.)
20 0 1 /1 0.71 41.3
(0.08) (5.9)
20 0 1 ny 0.72 40.9
(0.06) (8.3)
20 0 1 VY 0.76 443
(0.07) 9.8)
20 0.1 1 /1 0.98 25.7
(0.03) (3.8)
20 0.1 1 7 0.98 7.37
(0.02) 34
20 0.1 1 F7Ye 0.99 12.1
(0.03) (7.4)
50 0.1 1 r 0.82 28.6
(0.06) (6.3)
50 0.1 1 7y 0.82 253
(0.08) (9.3)
50 0.1 1 F7Ye 0.81 22.5
(0.11) (8.7)
50 0.1 0.9 /2 0.79 28.8
(0.08) (7.0)
50 0.1 0.9 . Ty 0.79 25.7
(0.14) (8.8)
50 0 0.9 n 0.61 49.0
(0.08) (6.6)
50 0 0.9 7y 0.57 54.0
(0.12) (8.7)
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One weighted average estimate of the number of assets at the node at the end of the

update cycle is

20: Xi

2 ~(r-t:)

g=20 “("1) . (7.21)
?:; 72 a(a)-(’—"')

This procedure will down-weight older observations. The parameter 0 < (@) <1 is a
smoothing parameter. The smaller o(a) is the less the older observations will influence
the estimated number of assets, 4.

8 _d
= (22 o(a) Y
Var 4] = (et o)) . (7.22)

0 1 2
; 77 afa) ")

Note that if o(a)=1 and 7;= 7, then a4 is the sample average of the observations and

z_2

Var[ﬁ] = o

To'update the probability of £ units at the node at the end of the reporting cycle.

) l exp - @ ky)2
\/ﬂ\/ ko(a)’ +Var[21] 2 ko(a)' + Var[z?(]

zo(k;n,t) = Cio(k;n,t — A (7.23)

where C is a normalization constant, 7 is the (possibly modified) probability from the
previous reporting cycle, and A is the length of the reporting cycle.

It may be advantageous to have the value of the smoothing parameter a(a) depend on
evidence that the observations, x, ..., xp are not from the same distribution. Ifxy,...,x0

come from a distribution with the same mean, then

Di+1 = Xi+1 - X; (7.24)

has mean 0 and variance r,%,l + rf.

62



Let 1 2 apn(a) > a(a) > 0 be constants. Set

lDi+1

_ \/Tzzﬂ + ng
ala) = D] (7.25)
i+1

acla) if ——2—\/__—__2—> c(c)
L Tin t7;

where c(c) is a constant; for example ¢(c) = 3.

’a v(a) if <c(c)

7.8 Examples

The simulation model of Section 7.6 is run. Observations occur at unit times. All
observations have sensor standard deviation 7. The reporting cycle time is either 2 or 5
time units. The parameter indicator of change, c(c) and the asset smoothing parameter if
change 1s indicated, (@) are varied. The TOE classification procedure (7.23) with 7o
modified as in (7.10) — (7.11) is used to estimate the number of units at the node. The
total number of replications is 100. The summary statistics of Section 7.6 are gathered.
The results appear in Table 7.2.

The results suggest that éummarizing the data with an average of the observations is
not as good as a weighted average with older observations having less weight. The results
also éuggest that using information from the previous node at the end of the previous
reporting cycle is advantageous.

The physical movement and obsérvation model of Section 7.6 is simulated again.
However, there are two different sensors; one with standard deviation 77 =20 and the
other with standard deviation 7z =50. Observations are taken at integer times and the
sensor used is chosen at random. Each sensor has probability 1/2 of being chosen. If two

observations are taken at a time both observations use the same sensor.
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Summary Statistics for Updating Procedures

Table 7.2

With More Than One Observation Per Reporting Cycle

7 | Reporting | Indicator Asset Asset Smooth Posterior | Average of | Average of
Cycle of Smoothing | Smoothing | Parameter | Probability Mean Mean
Time Change | Parameter | Parameter for Used Posterior | Deviation of
¢(c) No Change | Change | Number of Probability Posterior
(7.25) an(a) ac(a) Units of Correct Mean
(7.25) (7.25) ofp) Number of | Number of
(7.10) Units Assets from
(std dev. Correct
over Number
simulation (std dev.
repl.) over
simulation
repl.)
20 2 3 1 0.1 0.1 o 0.87 32.7
0.11) | (@13.9)
20 2 3 1 0.1 0 o 0.57 67.6
(0.11) (11.7)
20 2 3 1 0.1 0.2 o 0.85 33.5
(0.12) (13.1)
20 2 3 1 0.05 0.2 o 0.89 30.50
0.11) | (11.50)
20 5 3 1 0.05 0.1 /78] 0.88 46.7
(0.12) (24.2)
20 5 3 1 0.10 0.1 o 0.86 48.6
0.13) | (20.2)
20 5 2 1 0.05 0.1 0 0.85 52.1
0.12) | (211
20 5 3 1 1 0.1 o 0.70 71.0
0.18) | (19.9)
20 5 3 0.05 0.05 0.1 o 0.87 48.2
(0.12) (22.6)
50 5 3 1 0.05 0.1 V170) 0.62 63.2
(0.14) (24.3)
50 5 3 1 0.05 0 o 0.46 80.8
0.15) | (27.8)
50 5 3 1 0.05 0.2 o 0.63 64.0
0.12) | (@15
50 5 3 1 0.1 0.1 o 0.62 66.8
(0.13) (22.0)
50 5 2 1 1 0.1 0 0.62 74.5
(0.14) (18.3)
50 5 3 0.05 0.05 0.1 V:79) 0.60 65.8
0.15) | (24.9




Table 7.3 reports the simulation results. Each simulation has 100 replications. Once

again, there is the indication that weighted averages of observations with older

observations weighted less are better than simple averages. There is also an indication

that using prior information from neighboring nodes is better than only using information

from the node. The values of the various smoothing parameters do not seem to be that

important.
Table 7.3
Summary Statistics for Updating Procedures
Randomly Chosen Sensors
Unit
Asset Estimator Parameters Estimator
Parameter
Reporting | Indicator Asset Asset Smooth Mean Mean Average
Cycle |of Change | Smoothing | Smoothing | Parameter | Average of | of Deviation of
Time Parameter | Parameter for Posterior | Posterior Mean
No Change Change [ Number of | Probability Number of
ay(a) ac(a) Units of Correct Assets from
ap) Number of | Correct Number
Units of Assets
(std dev. (std dev. over
over simulation
simulation repl.)
repl.)
5. 3 1 0.1 0.1 0.79 58.1
(0.15) (22.7)
5 3 1 0.1 0 0.55 88.5
(0.15) (24.2)
5 3 1 1 0 0.47 97.1
(0.12) (19.4)
5 3 1 1 0.1 0.70 71.9
(0.15) (21.0)
5 3 0.1 0.1 0 0.57 77.3
(0.19) (31.3)
5 3 0.1 0.1 0.1 0.76 55.2
(0.13) 21.7)
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7.9 Generalization to More Than 1 Asset Type

Suppose that a unit has J asset types. Let Xj; denote the ith sensor observation of asset
type j. Let zj; be the standard deviation of the it sensor observation of asset type j. Let Li
be the time of the sensor observation and O; be the number of sensor observations of the

7t asset type during the reporting cycle. A weighted average estimate of the number of

assets of type j is
0; X
g rf-,-a(a)"(’—”i)
aj =4 | (7.26)
Zl a(a) )
and
O; T?l‘

(7.27)

To update the probability of & units at the node at the end of the reporting cycle

L 1 1 (d-ky))
mo(k;n,t)= Cito(k;n,t - A) — expi—— — (7.28)
E\/kaa(j)2+Var[Aj] 2 ko*a(j)2+Var[Aj]

where y; is the TOE mean number of assets of type j for 1 unit, o,(y) is the TOE standard
deviation of the number of assets of type j for 1 unit, C is a normalizing constant, 7o is
the (possibly modified) probability from the previous reporting cycle, and A is the length

of the reporting cycle.
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7.10 Updating Using Same Node Information

Consider just one asset type at a node and let 4(?) be the ground truth number of assets
of that type on the node at time . Assume observations of the asset number are taken at
times f; <#; <...<t, during an observation period. Let X(#;) denote the observation

obtained at time #;. Assume

X(tr) = ptr) + Blty)
where E(z;) has a normal distribution with mean 0 and variance 7(#;)2; the observation
X(t) could also be obtained from the binomial or multinomial sensor models of Sections
4 — 6; the appropriate variances should be used in the procedures below.

Estimates of node occupancy are obtained at the end of observation periods and use
sensor observations collected during the period. Since units move, ground truth (f) will
change as a function of 7. The problem of detecting when changes occur in ground truth
from observational data has received attention for many years; cf. Basseville (1988) and
Lai (1995). Problems of this type are called changepoint problems. If a change in ground
truth occurs during an observation period, then combining observations as proposed in
Appendix A may not be the best procedure.

There will be many nodes and arcs in a typical theater-level model. Sensor
observations may occur at many nodes and more than once at a node during an
observation period. As a result, the statistical calculation to estimate the number of assets
at a node will be done many times for each observation period. Thus, one must be careful
with regard to the computatiohal burden of the statistical calculation. Another procedure

for combining observations is proposed below.
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A proposed procedure for combining observations which may be from distributions
having different means

We will take a generic observation period to be one time unit in length; e.g. [0,1]. Let
¢ be a tuning parameter chosen by the analyst; good values for ¢ are 2 and 3.

Suppose observations are taken at times 0 <z <ty <...<f, < 1.

1. Compute
D - | X ()~ X (1)
C P () ()
X () - X (1)
n—-1 = 2 2 )
V72 () + 72 (t2) (7.29)

H

(1)~ x(t,-)
Dj = .
\/Tz(tj)”Z(fj—l)

2. If _maxz(Dj) < ¢, then compute
j=n,...,

y &)

2
ﬁ:—"l(tlL)— and ﬁ=—-—11—— (7.30)
2y 2y

Use 4 as the estimate of the number of assets at the node and ¥ as its

variance.
3. If jg}fl,)fz(D ;) >c, then find the largest j for which D; > c.
J=max{j: D;>c}. (7.31)
Compute
X(te)
ﬁ:ﬂr(—tl")i and 13=————!1——. (7.32)
k>JT(tk)2 k>J T(tk)
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7.11 Procedures for Updating Number and Type of Unit at a Node

For simplicity of discussion and notation we will assume there is one type of unit with
only one type of asset. Let K(n, ) be the number of units that occupy node # at time ¢ and
let A(n, £) be the number of assets at node n at time #; n could also be an arc. Assume the
prior distribution for the number of assets given the number of units with no sensor

observations is

P{A4(n,0) edalK(n,0) =k} ! M} (7.33)

1
\/27r«/_l€oy, p{ 2 kol

where yis the TOE (Table of Organization and Equipment) value for the amount of asset
for one unit.

Let ‘
z(k;n,t)= P{K(n,t)l= k| all sensor observations during [0, t]} (7.34)
and let

dFy(a;n,t)= P{A(n,t) edal all sensor observations during [0,7],K(n,¢) = k}

) (7.35)

= m—)—exp{—-il—(a —my (n,t))2 /vf (n,t)}.
Results from a small-scale simulation reported in Section 7.6 suggest that modifying
the prior distribution used in the Bayesian updating of the distribution of the number of
units at the node can improve the performance of the updating procedure. The
modification uses information concerning the posterior distribution of the number and
types of units at the nodes which are direct neighbors of n; the specification of direct
neighbors can depend on the length of time between sensor observations.
Suppose that node » has only 2 neighbors n_- and n.; these neighbors could be
adjacent arcs. Modify the prior distribution of the number and type of units at node » at

the beginning of the #t observation cycle as follows.
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a

(k)= —f:-n'(k,n_,t)+(l—a)ﬂ(k,n,t)+%ﬂ(k;n+,z)+%go(k)+ LAk (136)

where « is a tuning parameter; might try a=0.1; g(k) =0 if k# 0 and &(0)=1; and 8
assigns equal probability to each possible number and type of unit combination.

Let A be the estimate of the number of assets at node at the end of the #th observation
cycle; let V be the variance of 4. The posterior distribution of the number and type of

units at node # at the end of the #th observation cycle is

n(k,n,t +1)= Ci(k,n,t +1)

N 2
1 1 (A-R)
= exp ———:———2— ;o (7.37)
\/275\/V+k0'(a 2V +ko(a)
notice that the TOE values are used rather than a current estimate of the mean and
variance of the number of assets at the node given the number of units.
Numerical computation considerations suggest replacing (7.37) by the following
computation.

1. For each k, compute

f(k)=log#(k,n,t+1)— —;—log(f + ka(a)z) -~

N | =

2. Find
S =m]§1Xf(k)

3. Let
={k|f (k) - fu| < M}
the set of all number and types of units whose f value is within M of the
maximum; the value of M can be chosen by the analyst; M =4 might be

reasonable.

4. ForkeKk, let
exp{f }
Zexp{f )t

alk,nt+1)=
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For k¢ K
x(k,n,t+1)=0.

7.12 Updating Using Same Node Information with Binomial-like Sensors
Consider just one asset type at a node. Let £(¢) be the ground truth number of assets of

that type on the node at time ¢. Assume observations of the asset number are taken at

times #) <t <...<tx during an observation period. Let X(¢z;) denote the observation

obtained at time #. Assume the conditional distribution of X(#x) given (ty) is binomial

with () trials and probability of success p(f). In Section 4, an estimate of () is

proposed in (4.19)

X(#)

p(t) -

It is suggested that the distribution of Zl(tk) be approximated by a normal distribution

Hee) =

with variance 72(tz) = X(tr)(1 — p(tp)/p(t); if X(t) =0, then set #(#x)2 = v¢ >0 where

v§ is chosen by the analyst. A modification to the procedure proposed in Section 7.10 is
as follows. Let ¢ be a tuning parameter chosen by the analyst.

1. Compute

p(tk) (tk )
V72 (0)+ 7
X(tk_l) _ X(tk_z)
plte-1) P(tk-z)

Dy =
P () + P )

Dy =

g
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2. If ~n1§ax2(Df) < ¢, then compute
J=Koes

X(tk) 1

ezl

k T(tk)2

and
1
Z 1

k T(Z‘k )2

Use u as the estimates of the number of assets at the node and v as its

V=

variance.

3. If _rrléaxz(Dj) > ¢, then find the largest j for which D; > c.
Jj=K,...,

J=max{j: D;>c}.

Compute
X(t) 1
. &rpt) (1 )2
H= 1
N2
k>J T (tk )
and
" 1
VT 1
k>J T (tk )2

8. Ground Course-Of-Action Realization and Perception

8.1 The Problem
A theater-level action, in simplest form, involves the movement of units of a force,
here called Blue (B), such as infantry or armor brigades or divisions, from their initial

locations (network nodes) to a final destination (possibly a single network node). The
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ground forces may be supported by air reconnaissance and strikes. The course of action
(COA) plan could be that the units arrive at the destination, D, at a particular time and in
coordination, although quite possibly along different routes or paths. In reality, times of
transit from place to place (node to node) may vary, e.g. for reasons of weather or natural
terrain obstacles or equipment breakdown, etc., so that times of transit from node to node
may vary randomly. The arrival times at, and directions of approach to, the destination
may vary as well, but by design of B-force commanders. Of course the rate of advance
and force allocations depend upon B perceptions concerning the opposition’s actions and
capabilities.

From the point of view of the opposition, here called Red (R), the options for a B
action are known broadly. As the campaign develops the actual COA being carried out by
B will become increasingly evident to R. Of course R has his own intended COA, which
may develop spatially in conformity with what his C31 system tells him about B.

Given the above general background we wish to provide an analyst with the capability
of obtaining and maintaining a quantitative perception of one opponent’s COA (here B)
by the ‘other (here R), based on the latter’s sensor information and prior probabilities of

the various COAs. The methodology applies to either side.

8.2. Routes and Corridors of Advance as Part of a Course of Action

The definition of a COA involves a mobility corridor, which may comprise several
specific routes, e.g. highways or trails and neighboring territory over a broad geographical
area; it may even involve a sea-land amphibious landing action. Only one route may be
used by all units in- the particular COA, or several routes may be used by different
numbers of units. It is assumed that elements of major forces such as brigades or
divisions (units) move on such defined routes, i.e. along one or more axes of advance at a

speed influenced by the type of unit and the nature of the route. It is a convenient
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modeling assumption that units are detected on such routes; the probability of detection at
any time along a route (an arc, or node, in the current model) depends on the unit sizes
and types (their asset portfolio) occupying the route at the time and the types of
surveillance assets (sensors) viewing the route at the time.

Consider the problem of detecting and classifying an advancing force. It seems
reasonable to think in terms of sensor updating at regular time intervals A apart, where
A =6 to 12 hours when thinking about ground unit advance. Suppose no units have been
detected up to time kA on the routes within a given corridor. The observing force must
decide where to place his reconnaissance effort within the particular corridor for the
following time period (kA, (k+ 1) A], and he must update his probability of corridor
usage depending upon reports received from his reconnaissance system within that time
period. One way of proceeding is to specify that particular units will use particular routes
within the corridor, advancing at specific speeds. If they start the journey at specified
times then it can be forecast where they will be at specified times in the future. This
implies that times of exposure on particular parts of a baﬁicular route during time interval
(kA, (k+ 1) A] are specified. If reconnaissance assets are assigned to those locations
during those times the only reason that the units will not be detected is through failure of
the assets to perform adequately, given the presence of the units sought.

Uncertainties

Inherent in the above situation are various realistic variabilities and uncertainties.
First, the exposure times of particular parts of a particular route (arc segments and node
residence times in the arc-node model) will vary because start times and transit times
along route segments (arcs, nodes) will tend to vary, and are actually modeled as varying
randomly. Note that the probability law of transit and residence time variation that
governs movement is supposed known to the agent performing surveillance; this is

optimistic and can be changed. It may be that the maneuvering force will deliberately
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increase the variability of its movement so as to throw off the enemy reconnaissance
effort.

Second, uncertainty exists conceming reconnaissance or surveillance asset
effectiveness: successfﬁl detection performance is not certain, even if assets are employed
during a maneuvering unit’s exposure time in a particular geographical region. The
probability that the reconnaissance asset flies close enough to the force to detect etc., is
not unity; the probability that overhead surveillance assets detect may not be unity
because of cloud cover or weather conditions. Realistically, too, delays will exist in
processing detection reports and in corroborating them.

A third uncertainty factor exists concerning the size and asset composition (e.g. tanks,

APCs, infantry) of the maneuvering units.

8.3 Analyst Tasks and View

In what follows we describe the way in which an analyst must proceed to use
J-STOCHWARS; we attempt to describe this stepwise, although there probably are gaps
that must be filled. In particular we focus on B’s ground force movement, and on R’s
perception of it by reconnaissance assets that are mainly airborne or in space, until Blue’s
obj ecﬁve is reached, where ground forces are assumed to be present.

Analyst Steps: Modeling Red’s Perception of Blue’s COA.

(1) Establish Spatial Network: physical nodes and connecting arcs

(2) Specify current objective for (e.g.) Blue and a schedule by which forces
(specify types) move from Source nodes to (current) Destination.
Also for opposition, Red.
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(3) Initial/Blue COA Determination: analyst specifies geography of the advance,

options, and the numbers and timing of units advancing, first without

opposition (certain forms of opposition can probably be optionally

automatically represented, e.g. mine fields or even airstrikes). Broad mobility

corridors will be set up for B, within which more specific axes of advance are

specified. Red (R) must, in turn, assess B’s avenues of approach. The model

first takes these to be the same as the axes of advance. The B units will

advance along arc-node paths within these.

(2

(b)

Specify nodes & arcs in each axis of advance (see above). (Tentative; analyst

intervention).

Determine spatial realizations of each a.a. (avenue of approach): define

possible routes for forces within bands defining mobility corridors. Develop

alternatives within bands.

(b-1) Routes and force types are not independent: some routes are appropriate
only for certain force types.

(b-2) Optional routes, and forces thereon, could be specified by analyst.
Consider location of opposition in picking routes and timing advance.

(b-3) Optional routes can possibly be specified “automatically”, e.g., by
randomization with probabilities specified by the analyst over particular
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“4)

©)

©

(d)

route options. The analyst, acting for Red, must first develop a portfolio
of routes with possible unit types on them. These are Blue COA
options.

(Blue) picks one COA option that she will actually use; i.e., a bundle of

- paths/routes from each movement band consistent with a COA. These can be

called sub-COAs. In general there can be several sub-COAs, i.e. alternative

routes and forces thereon within a given COA.

(c-1) Respects route-asset compatibility constraints.

(c-2) Done by analyst intervention or by randomization.

(c-3) Blue remains on route until he encounters, or anticipates, opposition. At
some point may change COA. The present discussion does not yet
include encounters with opposition.

All of above is done on the basis of initial perception of opposition’s (Red’s)

locations and force composition and strength. It is subject to change. Success

depends on the quality/accuracy of that perception.

The Blue COA option is now simulated: transit times on arcs are simulated

from arc-time distributions.

(@)

Detection times by R sensor assets on arcs are simulated, potentially providing
information on location and type of B units and assets thereof to R; detections
occur at an exponential rate during units’ exposure time to the sensors; the
exponential rate will be a function of sensor allocation, detection range, etc.;
time-dependence is allowed by letting detection rate on an arc depend on the

time.

Next develop quantitative (Red) perception of the opponent’s (B’s) COA. This

develops from sensor data and prior information.

(@

(Red) allocates sensor effort to arcs/nodes in (Blue) COA’s. Options:

(a-1) Analyst specifies (using experience), with the aid of the Air Model.
Translate into detection rates of various units/assets on various arcs.

(a-2) Automatically determined using an optimization model (an option for
the future).
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8.4 A Proposed COA Perception Update Procedure Based on Unit

Detection.

In this section we detail an approach to COA quantitative perception updating. The
approach involves simulation in order to avoid practically infeasible tailor-made
analytical calculations. We first describe procedures that update perception based on
whether or not units are detected. Analytical calculations are computationally difficult
because COAs are not specified by single paths, but rather by mobility corridors which
can contain many possible paths. For a realistic network, the number of different ways
units may traverse a network for one course of action will be large. Furthermore, paths
belonging to different COAs may overlap during parts of the scenarios. Hence an analytic
approach to updating perception based on enumeration of all such paths does not appear

practical.

(1) Initial Steps.

(a) The analyst determines a COA perception update cycle time, A.

(b) AttimeskA (k=1,2, ...) measured from an initial time (e.g. action beginning)
the probabilities of the opponent’s (here B’s) COAs are calculated; those at
time (k+ 1)A are obtained from those at time kA, augmented by information
obtained in the time interval (KA, (k + 1)A]. In practice A might be 612 hours
in duration.

() Let C;be the event that the ith (i =1, 2, ..., J) COA is being pursued (by B); let
Gi(k) be the event that C; is perceived (here by R) to be in progress at time k.

Then let [T,(k)= P(a(k)) , the posterior distribution for various COAs at

time kA. This quantifies R’s current (time k) perception of B’s forces and
COA.
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(d) Consider a given COA, so let C; begin at time 0. Suppose for illustration we
have the two alternatives shown in Figure 8.2 and that Cj is actually being
pursﬁed. Cj has 4 units traveling along the leftmost route in Avenue 1, 1 unit
traveling along the rightmost route in Avenue 1 and 1 unit traveling along
Avenue 2. At time d1;€[0, A) a detection occurs on the left-most route in
Avenue 1 (denoted A1j); at time dj2€[0, A) a detection is made on A12; no
detections are made on A3, the only path in 4.

The above corresponds to actual data obtained in a real operation. The
objective is to obtain from it a probability that C; is actually under way, plus
probabilities of alternatives (here only C»).

(2) Evaluating the Likelihood of a COA.

We want to evaluate the probability of observing what has been observed in terms of
the possible COAs, i.e. the likelihood that one or the other COA is in force. This can then
be combined with Il;i(k) to update to fIi(k+ 1). We want to do so economically, so we
choose to approximate and simplify by removing the specificity of the observations

mentioned in (1),(d): we report seeing 2 detections in Avenue 1 and 0 in Avenue 2.
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We now calculate the likelihood of C; and C; on the basis of the above data

presentation. Here are two procedures. An exposure time during (kA, (k+ 1)A] is the

“amount of time in (KA, (k + 1)A] that units on an arc are subject to sensor observation; it

is a function of transit times, the type of sensor, and environmental variables. Let A11(k)

be the exponential rate of detection for one unit during its exposure time on Aj; in

(KA, (k+ 1)A]. The following is a simulation approach to evaluating the likelihood of a

COA.

(a) Simulation

(a-1)

(a-2)

Suppose Cj is in effect. Simulate the exposure times, on each arc, of
4 units on 41 and 1 unit on A3 during (0, A], and also simulate for
each exposure time the number of times detections occur. Note that the
detection rate on 41 is A11(k)4 and on A3 is Ajp(k)1 for Cy; it is
A11(k)1 for Cs.
Use the constraint that if a detection occurs on an arc in an avenue of
approach no more can occur thereafter on that arc or on routes/paths
that continue it (unless the arc ends at a node out of which several arcs
occur; in that case the units originally detected could be lost, and might
need to be re-detected). There can thus be

noo replications with no detections on either 411 or 412;

nio replications with 1 on 411, 0 on 413;

np1 replications with O on 411, 1 on 413;

n11 replications with 1 on 411, 1 on 412;
To estimate the likelihood of C; given 2 detections on 4; (one on 413

1
1 .
and one on A13) quote (ﬁu_()) ; here n11(1) refers to one detection on

n,(1)

each path for 41 and n/1) is the number of simulation replications.
Presumably one also simulates events on Aj, using Ayl for the

no(2)
m(2)

where ny(2) is the number of n42) replications that result in 0 detections

detection rate for Cj; the probability of the observed data is

on Aj.
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(b)

Hence the (combined, estimated) likelihood for C; is o(Cj; data) =

Co)6)

(a-3) Next re-simulate the detections but with the detection rates appropriate

to COA (4
C2: A1rl on 411 (and 412);
A5 on Aj

and tabulate the same simulated ratios. Apply Bayes to update.
(a-4) The above procedure will work for arbitrarily complicated setups, but
may be computer intensive. An alternative is
Hybrid Simulation and Calculation of Likelihood.
It is advantageous to avoid the simulation of detections in the process of
updating perceptions of alternative COA probabilities. A possible way of
doing so is as follows.
(b-1) Consider the 7t exposure time realization for arcs and nodes occupied
during (KA, (k + 1)A]. Let ‘
Tilkr)= X4, (kellir), Us(k)/A 81)
jel(k)
be the mean detection rate over the entire mobility corridor for period £:
times (kA, (k+ 1)A]. In (8.1) we sum up the basic detection rates on all
arcs and nodes that are occupied (have non-zero exposure times
e(k; r)j;) during period k); these are weighted by the appropriate
exposure times for COA C;, and by the arc/node loads (unit sizes),
Uji(k) that appear on arc/node j for COA C;.
We now compute that the probability of 0 detections as
P{D(k)=0/G;,r} = ¢ M)A
This is the likelihood element for C; given the exposure times of
realization r; if exposure times are in effect sampled independently we
use
o1&
Doli, k)= EZI e

where R is the number of replications.
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(b-2) Suppose at least one detection takes place, an event of probability
l—e'z"(";r)A = Ii(k;r)A if Z,-A is small, as may be true in practice.
Simple Approximate Approach When Detections Occur in
(KA, (k+ 1)A].

Assume that if 1 or more detections occur in the 4th interval

~Ai(kir)A (Z"(k ol )A)d(k)

P{D(k)=d(k)Ci.r} =< gt
If the above is averaged over the R replications of exposure time we
arrive at an expression for
" P{D(K)=d(k)G)} = Fuge) k)

an average of Poisson probabilities. This is the semi-parametric version
of the Simulation approach above, in (2), (a).
A More Correct (but Difficult) Approach

The above procedure is not literally correct (although it may be an
adequate approximation) since once a unit detection occurs on a
specific route there are assumed to be no more detections on that route
unless the unit reaches a physical node where she can be hidden or
emerge “branched” or “split” into two or more unit segments (e.g. a
division may divide into several brigades) which take different routes. It
becomes necessary for the analyst to decide sow the split occurs; since
this can be done in several ways a multiplicity problem threatens; one
way to handle this is by sampling. A path on which a detection has
occurred during period k is essentially pruned for the purpose of
detection after the detection on it in period k; this holds into period
k+1, or until a node is reached with a split. Note: another way of
pruning is to ignore all detection events (counts) greater than 1.

After detection occurs classification assets are brought into play.
The updating that follows will be described subsequently.

8.5 Updating the Perception of COA Using Asset-Counting Sensors.

Once units are detected, asset counting sensors can be employed to obtain more

information. Suppose units have been detected at node N,. Let Si(n,J; k), ..., Sy, (n,J; k)
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be the sensor observations of assets of type j at node N, during the observation period

(kA, (k+ 1)A]. We will assume A is small enough so that the number of assets at the node
is constant over the period. The least-squares estimate of the number of assets of type j at
node N, based on the latest sensor information only (gathered during period kA, (k + 1)A

is

& p(n J, <
An, jk Z Z T (8.2)
=1 T (4)

where z'fy- is the variance of the error of the sensor observation S,(r, ; k).

We can interpret the results of the sensor observations as resulting in a normal
distribution for the number of assets of type ;j at the node during the time period; the

distribution has mean

by by
mnj(k>=[z»(n,j;k>/rﬁj<e>} / $ ] )
¢=1 t=1 Tnj
and variance
vyi(k)= - 1 (8.4)
3 1
£=1 Trzy'(f)

Let J(a; k) be the collection of all nodes that might be occupied during the period
(KA, (k+ 1)A] for a particular avenue of approach c. The result of all sensor observations
during (kA, (k+ 1)A] is a distribution of the total number of assets of type j at all the

nodes in J(¢; k) which is normal with mean

mi(ask)=" > my(k) (8.5)
NneJ(ask)
and variance |
(k)= > vk(k); (8.6)
NpeJ(ask)
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how well this distribution reflects the true number of assets that are on the avenue of
approach « will be affected by the number of sensor observations at each relevant node.

A particular COA ¢ has a distribution of the total number of assets of type j at nodes
NyeJ(e; k) in the avenue of approach « during the time period (XA, (k+ 1)A], 4 i (a;k) ,

P{Zj(a;k) €da|COA = c} = (f(a;,uj(a,k;c), a}(a,k;c))da (8.7)

where &a; u, 62) denotes the normal density function with mean x and variance ¢2; the
mean Lj(a, k; c) is obtained from the TOEs (Table of Organization and Equipment) for
the types and numbers of units using the avenue of approach « for the COA c.

The procedure to update Red’s perception of Blue’s COA is as follows. Let Il(c; k) be
Red’s posterior probability at time kA that Blue is following COA ¢. To obtain a posterior
probability which incorporates the sensor information obtained in (KA, (k + 1)A]
Ic;k+1) =DH(c;k)Hij(a,,uj(a,k;c),ai(a;k;c))f(a,ﬁj(a;k),ﬁfj(a;k))da

a j

(8.8)
=DI(c, k)H H f(r‘n‘j (a; k) 1 (e, ks ¢), 05 (e, k) + o (e k, c))

where the product « is over the avenues of approach, the product j is over the asset types
and D is a normalization constant.

Note: the above can be adjusted for the time that the sensors have to “measure” the unit
assets during (KA, (k + 1)A]; it can also be made to incorporate a likelihood component
informative of assets from the detection. Note also that since the procedure is based on
the total numbers of assets each COA has on different avenues of approach, the procedure
will produce more discrimination between COAs the more differentiated the COAs are.
The COAs will be better differentiated the greater the difference of the numbers of assets
on different avenues of approach for different COAs. The COAs will also be better
differentiated in situations in which the avenues of approach do not have nodes and arcs

in common.
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8.6 Numerical Considerations
The proposed updating of the course of action of (8.8) is susceptible to numerical
problems. We propose to first compute the logarithm of the normal density functions.

First compute

tek+1)= Zz—%(ﬁij(a; B)-py(ak.o)) [BHask)+od(ahd)]  (89)

a j

ez(c,k+1)=ZZ—%m(vf(a;k)mﬁ(a;k,c)) (8.10)
a j

Ue,k+1)=bi(c,k+1)+ £5(c,k +1)+InII(c, k). (8.11)

Order {(c, k+ 1) from largest to smallest; e.g.

E(l)(k+l) = max {(c,k +1); (8.12)
call these £(1)(k + 1), £2)(k + 1), ... Let c(1), ¢(2) be the corresponding Course of Action
(COA), e.g.

cw ={e:tek +1) = maxf(c,k + D} (8.13)

if there is more than one COA in the set, order them in some fashion.

Consider those COA’s such that
ey (ke +1)— £ (k+1) < 4; (8.14)

call these (1) €(2)> --+» €(m)- Let R be the number of COA’s not among these m.

Let 0 < a <1 be a parameter to be determined by the analyst; e.g. @=10.9.
For ¢ 6{0(1),c(2),...,c(m)} , put

exp{€(c,k +1) - £;)(k+1)}

> exp{t(k+1)= by (k+1)}
sy cim}

H(ck+l)=a (8.15)

For ¢ E{C(l),C(z),...,C(m)}, put
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I'I(c;k+1)=(1—a)—}2-. (8.16)

Another possible procedure to update the probabilities of the different COA’s is the

following. Modify the prior

Ii(c,k)=(1-a) Hfc k)+a——— (8.17)

a

where |C] is the number of different COA’s and « is a parameter chosen by the analyst,

e.g., a=0.1. Compute

fe,k+1)= ti(c,k +1)+£5(c,k +1)+ InTl(c, k). (8.18)
Order £(c, k + 1) from largest to smallest and define £(;y(k + 1), c(;), as before. Let

exp{t(c,k +1)—£;)(k +1)}

> exp{f(j,k+1)—€(1)(k+l)}

Jee-m)

for ¢ e{c(l),c(z),...,c(m)}; for ¢ e{c(l),...,c(m)} let I1(c, k+1)=0.

T(c,k+1)= (8.19)

8.7 Degrading the Estimate of the Number of Assets on a Node for Which
There Are No Recent Sensor Observations

Suppose the last sensor observation of node n occurs during observation period k. Let

;lj(k;n) be the estimate of the number of assets of type j on node » at the end of

observation period k; let uf-(k;n) be the variance of the estimate. Suppose there are no

sensor observations of the assets at node n for the next m observation periods. Since the
node has not been observed for m observation periods, there may be more uncertainty
concerning the estimate of the number of assets of type j at node »n. Thus we will inflate

the variance, by setting

uf-(k,n)

m

(44

v} (k+myn) = (8:20)
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where 0 < ¢ <1 is a parameter determined by the analyst. If &= 1, there is no inflation.

The standard deviation is inflated by (1/ Ja ye.

Inflation Factor for Standard Deviation of the Estimate: 1/ «/Z

Ja \m: 1 2 3 8 16
0.8 1.25 1.6 1.95 6.0 355
0.9 1.1 1.2 14 2.3 54
0.95 1.05 1.1 1.2 1.5 23

Suppose the observation intervals are 3 hours long. If Ja =0.9 and there have been no
observations for 24 hours (8 observation periods), the standard deviation of the estimate
is multiplied by 2.3. It may be appropriate for nodes and arcs to have individual &’s; one
a for a node/arc which units travel through; another « for a node on which assets are
known to stay for a period of time.

To improve the numerical stability of the COA updating calculation, it may be
advantageous to first do a test of hypothesis that the estimated number of assets of type j
at node # is different from zero.

Let J(c; k) be the collection of all nodes ‘that might be occupied during the
observation period [kA, (k+1)A] for a particular avenue of approach. For each node
neJ(a; k) and type of asset j, compute

ﬁj(k+l;n)

B;(k;n)= o 6]

where vj(k; n) has been multiplied by (1/ Ja )™ if node n has not been observed by a

sensor during the last m observation periods. If

Bj(k;n)<,3
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then do not include node # and asset j in the calculation for COA update where f3 is

chosen by the analyst; f=2 may be a good choice. If all asset estimates are 0 for J(q; k),

let D7 be the smallest variance.

8.8 A Procedure to Update COA, Using Asset Counting Sensors, Which
Recognizes the Number and Type of Unit on a Node/Arc Changes Over
the Updating Period
The estimates of the number and type of units on each node and the number of assets

of each type on a node is updated at the end of each sensor update cycle; nominally

2 hours, cf. Sections 7.6 and 7.11.

The COA update cycle length is often longer; nominally 6-12 hours.

It is proposed that the total number of assets of type j in the avenue of approach ¢,

A;(ar; k) be estimated as the sum of all the estimates of the number of assets of type j on

all the nodes and arcs in avenue o obtained in the latest sensor update cycle. The
estimation procedure for the number of assets of type j on a node/arc would incorporate
procedures in Section 7.10 that address a changing ground truth during the sensor update
cycle and that of Section 8.7 which degrades the estimate on a node/arc for which there
are no recent sensor observations.

Let my; be the estimate of the number of assets of type j, on node/arc » at the end of
the latest sensor update cycle and v,fj be its variance. The estimate of the total number of
assets of type j in a particular avenue of approach « is obtained from (8.5). Finally the
probability that each COA is being executed is obtained from (8.9) — (8.12) and (8.17) -
(8.19).
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APPENDIX A
Node Occupancy and Its Perception, and COA Inference

Describe the occupancy of a node, denoted by n, by the numbers of units of different
types (e.g., heavy armor brigades, light armor brigades, etc.); Uj(n; ¢) is the number of
such units of type i (i =0, 1, 2, ..., ]) at time ¢ at node n; Uy(n; ¢) can designate the empty
node if necessary.

Within a unit of type i, there may be several asset types. Agree that distinguishable
assets occur in J classes, and that a unit of type i has a mean number of assets of type j
(=1, 2, ..., J) equal to g;(n,), and a variance o%(a;n,t) . Furthermore, adopt the
provisional model that the actual number of assets of type j possessed by a particular
randomly selected unit is a random variable, A(i,, n, f) with distribution function
Fij(x; n, £). When convenient, and for illustration, we take Ax(i,j; n, 1), k=1,2,.., U
i.e., the numbers of assets of type j owned by the U; copies on Node »n to be independent
and normally/Gaussian distributed. The time—dependeqt parameters ¢;; and crg- can reflect
the fact that a campaign has been in progress for some time and attrition has occurred and

is subjéct to change. Let

A (i, j,n,t)= ZAg(l J,yn,t) (A.1)

denote the total number of assets of type j possessed by units of type i at the n# node at
time 7.

It is convenient to refer to the vector of distributions of typical asset-type numbers for
a particular unit type as the signature (or asset signature) of the unit type. Note that
signatures of different individual units of the same type will inevitably differ if their

various asset counts differ, as could well happen. Let
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1 U
],nt ZZ l],nt (A.2)
i=] ¢=1

the total number of assets of type j at the node at time ¢.

Finally, let Sj(s, n; f) denote the total count of assets of type j by sensors of type s
(s=1,2,...,5) at node n at time ¢. S; represents the quantitative perception of the
opponent’s type j asset level. It is convenient, although possibly optimistic, to assume
inifially that

E[S;(s,ms2)|A(j,m,0)| = A(jm.t) (A3)

with a variance that can depend upon sensor type s, node identity, #n, and the time
(especially if at night). Other influences on the ability of a sensor to assess the presence
and strength of an opponent’s assets are the latter’s activity: radiation using radars, or
communication attempts are two such clue-providers.
Towards Probabilistic Node-Asset Assessment, Given Perception

In an idealistic and theoretical sense it would be desirable for a protagonist in a
theater-level campaign to possess the joint probability distribution of the types of units
occupying all relevant nodes, along with their asset positions, at every time z This
distribution could be influenced by the protagonist’s disposition of its sensor assets and
own force maneuver as well as by thé opponent’s maneuver, presumably influenced by its
own sensor asset disposition. Of course the raw sensor data can, and almost certainly will,
be affected by deceptive tactics employed by the other side. Consequently fusion of the
data and subsequent actions must attempt to wisely account for such a likelihood when
situation assessments are made and future actions planned.

The development of an automated systemic model of a theater campaign, or even a
modest fragment thereof, must realistically stop short of even a completely integrated

joint probabilistic assessment of nodal state for a particular protagonist. Instead, we will
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endeavor to develop plausible marginal probabilistic descriptions of individual nodal

states.

UNIT TYPES
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The Unit-Types, Assets, Sensors Hierarchy.
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A Univariate Model

We start with a univariate model, both for assets and sensors. For simplicity we drop
explicit reference to n and . Suppose that the node is occupied by (possibly multiple)
units of one type, i, and a sensor of type s estimates the number of assets of type ; at that
node. We assume the following model: First, sensor assessment is randomly distributed

around the actual asset number:

P{Sj(s;t) edx]Z(j) = a} = \/2_;’[ . exp{—%(x—a)2 / rf,j}dx (A.4)
5,J

Second, asset number is randomly distributed around a known value, ¢;i(n, £), where the
latter is derivable from the Table of Organization and Equipment (TOE), plus any
information available concerning unit campaign éxperience (the unit may have been
attrited). Assuming that actual j-asset values are independently distributed around the
TOE value, then

P{A4(j) edalU; =u,Ur =0,k #i} = exp{—%(a ~uay)’ /uoﬁ-(a)}da (A.5)

1
V27ucy(a)

It can easily be shown that
P{S;(s,t) edx|U; =u,Up = 0,k =i} =

(A.6)
! exp{—-l————z——}——z—(x——uozi,-)2 }dx
\/272‘\/110'5-((1)+ 5 ‘

Further, by Bayes’ formula,

P{4(j) edalS;(s;t) = x,U; =u,U; = 0,k =i}
(A.7)

= o j(ls,i,u,x) exp{'-‘;‘(a--_"U(s,i,u,x))2 /vjz-(s,i,u, x)}da

where
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2 2
P 1))

A8
ucy(a)+r (4.8)

uag’;(a) - 7’
ua,%(a)+rfj uaﬁ-(a)+1§j

mj(s,i,u,x) = uaj . (A.9)

It next becomes necessary to account for the unknown number, u, of i-type units assumed

to be present in order to assess the asset count distribution. To do so, let

(i,u) = P{U; =u,U; =0,k #i} (A.10)
the prior probability that there are u units of just one type, i, at the node. Recall that we

are assuming there is only one type of unit at the node; thus,

iZH(i,u)=l (A.11)

i=l u

We must compute

(i, u;x) = P{Us =u,Uy = 0,k # 1|8, (s;2) = x}

= [P{U, =u,Uy =0,k i, 4; edd|S,(s;) = x} (A.12)
= cI1(i,u) ! exp{—%z—l——z—(x —ua,-j)z}
m\/uaﬁ(a)+ 7} ucj(a)+ty

where the constant ¢ is determined by the normalization condition.
> > O(i,ux)=1 (A.13)

Finally, then, the distribution of assets of type j is a probability (or convex)

combination of normals:

P{Z(j) edalS;(s,t)= x} =

1 1 N e
ZL/Z—ﬂ-Uj(s,i,u,x) eXp{—E(a—mj(s,z,u,x)) /uj(s,z,u,x)}j}l‘l(z,u, )d

iu

(A.14)

and the joint distribution
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P{U; = U = 0,k #1, 4(j) e dal$,(s;1) = x}
(A.15)

=T1(i,u; x) ) exp{-—%(a ~-m; (s,i,u,x))2 /v3 (s,i,u,x)}da.

1 .
N27mv;(s,i,u,x
This latter joint distribution is of the same form as the joint distribution prior to the sensor

estimate. Thus similar calculations can be used to update the distribution as new sensor

observations come in. To be specific let
H(i,u;x(t),t) = P{U,- =u,U; =0,k # ilSj(s(w),t(w)) = x(w),t(w) < t} (A.16)

be the conditional distribution of the type of unit and number of that type of unit present
given all the sensor observations that have occurred before time 7. Let
m;j(t)=m;(s,i,u,x;t) (respectively v(t)=v3(s,i,u,x,t)) be the conditional expected
value (respectively variance) of the number of asset j given there are u units of type i
present at the node and all of the sensor observations before time z. Suppose a new sensor
observation x(¢ + 1) from a sensor of type s occurs at ¢ + 1. The posterior distribution I
1s updated as follows
| H(i,u;x(t +1),2+ 1)
| | sy (A1)
= CH(i,u; x(t),t)f(x(t +1); mj(s,i,u,x(t);t),(uf (s,7,u,x(2);2) + rfj) )

where &(x; m, v) is the normal density function with mean m and standard deviation v
evaluated at x and C is a normalizing constant. Further the conditional moments of the
number of asset j given the sensor observations and the type and number of unit present

are updated as follows
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2 2
vj(t) Ty
=— 1 x(t41)+——L—m(t
v5(t)+ 1% *{ )+u§(t)+ffj (1)
(A.18)

o) =0
v5(t)+ 7y
An Independent Multivariate Model

Once again assume that the node is occupied by (possibly multiple) units of one type
and a sensor of type s estimates the number of assets of various types (say 2) at the node.
Consider the following model. First a sensor assesses the numbers of different assets
independently and each sensor asset assessment is randomly distributed around the actual
asset number.

P{Sl(s;t) edn, S (s;t) edra|A(1) = a1, 4(2) = a2}

(A.19)

2 1 1 2 2
=H\/_2;r _eXP{’E(xj—aj) /rs,,-}dxj
Jj=1 s,/

Second, given the type of unit and the number of units present, the counts of the different

types of assets are independently distributed around the TOE values.

P{A(1) eday, 4(2) eda|U; = u,U =0,k # i}

= Qmexp{——;—(aj —ucx,-j)2 /uo%-(a)}daj (229
One can calculate,
P{S;(s;t) edx;;j=12U; =u, Ui = 0,k %}
= [ [ P{8;(s;t) edx;; () edaj; j = 120U =, Uy = 0,k # 1} (A21)

aya

(x; —”arj)z}d"j

2
1 o1
EJZﬂ\/;ag-(aﬁrfj = uoj(a)+7y
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Thus, if

(i,u) = P{U; =u,Uy =0,k #i}
as before, then

P{U,- =u,U, =0,k #ilSl(s;t)= xl,Sz(s;t)=x2}

2 1 I )
= CHI(z,u eXPi— 75 \Xj —UQy
( )[Ix/—_\/uo-y a)+1% - 2u0§-(a)+r§_,-( / 2 }
=H(i,u;x1,x2).
Further
P{Z(J') eda;;j=12U; =u,Ux =0,k #1,5;(s,t) =x,; j = 1,2}
. 2
H\/_v,(sz » xj)exp{——( —mj(s,i,u, xj)) 1v;(s,i,u,x;) }daj
where
2 2
2(¢ N ucy(a)ry
vilsbux;) ucy(a)+7%
2 2
. uO',j(a) Ty
i\S, L, U, X; )= ;= ..
mj(s,1,u xj) i@ X; T uQ
Letting
d(sim)=—p—exp| - (s 2,
2mv 2
the posterior distribution
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P{Z(j) €daj; j=12,U; =u,U; =0,k ¢i|Sj(S;t)=xj;j = 1,2}

= CH(z’,u)H §(aj;mj(s,i,u,xj),vj(s,i,u,xj))f(xj;ua,;,(uo‘}‘} + ng)o.s)daj (A.27)

2

=T1(i,u; 31, % )H §(aj;mj(s,i,u,xj),vj(s,i,u,xj))daj

j=1
where
27\ 2
2N ucj(a)ry
vils b)) ucy(a)+75
) (A.28)
_ uci(a) 7
i\, LU, xX; )= i+ if
mj(5,h4%;) ucp(a)+ 75 * uc’(a)+1y “
Recall that,
P{U; =u,Uy =0,k #i,4; eda;; j =12}
(A.29)

2
= H(i,u)H f(aj;ua,j,ua,i-(a))daj

j=1
and thus the posterior distribution is of the same form as the prior. Hence, one can use the
above posterior distribution as the new prior and compute a new posterior distribution
when new sensor information becomes available. To be specific, let

T, u; x(2),¢)
(A.30)
= P{U; = w,Ux = 0,k #1[S;(s(w),#(w)) = x(w),t(w) <1,j =12}

be the conditional distribution of the type of unit and the number of that type of unit

present at the node given all the sensor observations that have occurred before time z. Let

m;(t)=m;(s,i,u,x;t) (respectively v;(¢)=v}(s,i,u,x,t)) be the conditional expected
value (respectively variance) of the number of asset j given there are u units of type i

present at the node and all of the sensor observations before time ¢. Suppose a new sensor
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observation {x;(¢ + 1)} from a sensor of type s occurs at # + 1. The posterior distribution

I1 1s updated as follows

H(i,u;x(t +1),1+ 1)

= CT1(i,u; x(t),z)H §(x (2 +1),m;(s,1,u,x; t),[V§ (t)+ rﬁj]o.s )

J

(A.31)

where the product is over those types of assets for which there is an
observation; &(x; m, v)is the normal density function with mean m and standard deviation
v evéluated at x and C is a normalizing constant. Further the conditional moments of the
number of asset j given the sensor observations and the type and number of unit present

are updated as follows

mi(e41) =20 ()

vjz(t)+ rgj vf (t)+ Tfj
and (A.32)
2(:\ 72
3er1) =
vi(t)+ 75

Example

In this example there are 2 types of units: I and II. There are 3 asset types. Suppose
unit I has 0 assets of type 1, 100 assets of type 2 and 30 assets of type 3. Suppose unit II
has 50 assets of type 1, 150 assets of type 2 and 50 assets of type 3.

Suppose there are 2 sensor types. Sensor type 1 can estimate the count of assets of
type 1 and 2, but not 3. Sensor type 3 can estimate the count of assets of type 3 but not 1
and 2. .

Assume the following prior distribution.
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P{4(j) edajU; = w;Up = 0,k =1} =
: 1 2 2
H\/T—-m—)-exp{—i(aj —uay) /uag(a)}daj (A.33)

P{U; =u,Uy =0,k ¢i}=% for i=12u=12

where
0 if j=1 (05 if j=1
ay;={100 if j=2 o =425  if j=2
30 if j=3 5 if j=3
(A.34)
(75 if j=1 (10 if j=1
ay; =4150 if j=2 02 =425 if j=2
50 if j=3 5 if j=3

that is, the number of assets of each type are independently normally distributed and the
prior distribution of the unit type and number of units occupying the node assigns
probability 0.25 to each of the events: there is one (respectively two) units of type I; there
is one (respectively two) units of type I

Assume the distribution of the sensor estimate of the count of assets at the node is

P{s;(1,m;t) edx;;j =1,

A(j)=a;j=12}

2 1 2 (A.35)
= expy——(x; —a; /r}dx-
wa—flj { (J J) 1j J
where
25 if j=1
T1j= ) )
35 if j=2 (A36)

1 1
P{S3(2,n,t) edxs|4; = a3} = e exp{—-—z—(xg —a3)/r%3}
23
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where 73 = 10.

The results of the updating procedure appears in Table Al. Displayed are the time of
the sensor report, the type of sensor making the report, the estimated number of assets of
each type made by the sensor, the posterior distribution of the type of unit and number of
units present, and the conditional posterior means and standard deviations of the number
of assets of each type present given the type of unit and the number of units present.

For time 0, the prior distribution of the unit type and number of units present
I1(i, u) = 1/4 is displayed. Also displayed are the conditional moments of the prior normal
distribution of numbers of assets of each type given the unit type and number of units
present. At time 1 there is a report from a sensor of type 1 that there are 10 assets of
type 1 and 80 assets of type 2. This information updates the probability that there is 1
unit of type I at the node to 0.94. At time 2 there is a report from a sensor of type 2 that
there are 35 assets of type 3. This information updates the probability that there is 1 unit
of type I at the node to 0.99. At time 3 there is a report from a sensor of type 1 that there
are 60 assets of type 1 and 140 assets of type 2. This information decreases the probability
that there is one unit of type I at the node to 0.81 and increases the probability that there is
one unit of type 2 at the node to 0.18. At time 4 there is a report from a sensor of type 1
that there are 90 assets of type 1 and 200 assets of type 2. This information increases the
probability that there is one unit of type I at the node to 1. At time 5 there is a report
from a sensor of type 2 that there are 70 assets of type 3. This information decreases the
probability that there is one unit of type II at the node to 0.13 and increases the probability
that there are 2 units of type II at the node to 0.87.

The sensor observations were chosen so that the observations at times 1 and 2 might
come from one unit of type I. The sensor observations after time 2 may come from

another situation. Note that the procedure does respond to the change.

115



To further investigate the responsiveness of the procedure to change, a simulation was
conducted. The ground truth for the simulation is as follows. For the first 5 time periods
there is 1 unit of type I at the node. The (true) count of each asset type is drawn from the
prior normal distribution for one unit of type I and rounded down to the closest integer; if
the simulated asset count is negative it is set equal to zero. The (true) count of asset 1
(respectively 2, 3) is O (respectively 69, 38) for the first five time periods. For the
remainder of the time periods, there are 2 units of type II at the node. Once again the
count of assets of each type is drawn from the prior normal distribution for two units of
type II and rounded down to the closest integer. The resulting count of asset 1
(respectively 2, 3) is 149 (respectively 290, 108). The standard deviation of sensor 1 on
asset 1 (respectively 2) is 25 (respectively 35). The standard deviation of sensor 2 on asset
31is 10. |

For each time period, a random number is drawn to determine the type of sensor
making the observation; (each sensor type is equally likely). Given the sensor type, the
sensor observation is drawn from a normal distn'butioﬁ with mean the true asset number
and standard deviation for the asset type and sensor type; the resulting number is set equal
to zero if it is negative.

The results of the simulation appear in Table A2. Once again the table lists the times
of the observations, the type of sensor making the observation, the sensor’s estimated
number of assets, the posterior distribution of the unit type and number of units after each
observation, and the conditional posterior moments. The row for time 0 displays the prior
distribution.

Recall that there is one unit of type I at the node for times 1-5. The posterior
distributions quickly reflect this ground truth; after the first observation the posterior
probability is 0.89 that there is one unit of type I, after the second observation, this

posterior probability is increased to 0.99; after the third observation to 1.0.
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Recall that for times 6 on, there are two units of type II at the node. The observation at
time 6 causes the posterior distribution of there being 1 unit of type I to decrease to 0.05
and increases the probability of there being 2 units of type I to 0.95. Thus, the updating
procedure does reflect the fact that a change has occurred but does not correctly identify
the type and number of units. It is not until after the observation at time 12, that the
updating procedure puts a sizable posterior probability on the event that there are 2 units
of type II. This sluggish behavior is probability due to that fact that after the observation
at time 5, the posterior probability that there are two units of type II at the node is (a very
unlikely) 10-26. Subsequent observations raise the probability to 10-5 after the 11th
observation. Thus, it appears that the Bayesian methodology must overcome its belief
after time 5 that it is extremely unlikely that there are 2 units of type II at the node.

Some Generalizations

Let X(nyt) = (Ul(n;t), Us(n;0) ..., U(n;?)) be a vector describing the number of units of
each type at node # at time #; Uy(n,?) is the number of units of type i at node » at time z. If
the node is unoccupied at time ¢, X(n,¢) = (0,0,...,0).

The total number of assets of type j at the node at time # is

U,(n,t
J N, t = Z A (i, jom, t
i=1 k=1
Assume {4(ij,n,f)} are independent normal random variables with mean ¢ and

variance o}(a). If Uf(n,f) > 0 for some i then A4(j,n,?) is normal with mean

I U;
mj LU 0 Z ;i
i=1 k=1

and variance

I
Vi (..., ur;n0) = ZZO’é(cz)
i=1 k=1
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If the node is empty we assume A(j,n,t) is normal with mean 0 and small standard
deviation, e.g., 0.25.

Let 7(uy1, up, ...,ur; 0) denote the prior possibility that there are u; units of type i
present at the node.

Assume that a sensor of type s is able to estimate the number of assets of type j for

JjeJ(s) where J(s) is a subset of the assets types. For each sensor type s

P{S;(s;mt) edx;s j € J(s)A(j.n.t) = ;3 e J(s)}

1 1 2
Jl;(ls) \/2_71'-75,j,n,t { 2 (( ’ J) ! 1)

that is the sensor observations are independent normally distributed about the true number
of asset j.

Once again a recursive procedure for updating the distribution of the number and
types of units at the node can be obtained; as well as a procedure for updating the
conditional mean and variance of the number of asset j at the node given the number and
types of units. The development is similar to that of the previous sections. To be specific

let
H((ul,...,uI);x(t),t)
= P{U1= u,...,Ur = u;]Sj(s(w),t(w)) =x(w), j e J(s),2(w) < t}

be the conditional distribution of the type of unit and the number of that type of unit
present at the node given all the sensor observations that have occurred before time z. Let
my((u1, ...,up); t) (respectively ui- (u1,...,ur);t ) be the conditional expected value
(respectively variance) of the number of assets of type j given Uy = uy, ..., Ur=uyand all
the sensor observations before time ¢ Suppose a new sensor observation
{xj(t + 1); jeJ(s)} becomes available. The updated probability of unit type and number is

computed as
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H((m see sty ) x(2),x(t +1);2 + 1)

=ammw4@m@@114@@+m%vuﬁw+éfﬁ

Jjed(s)
where C is a normalizing constant. The conditional moments are updated as follows.
mj((ul,...,ul);t +1)

H(CTRT)A; 2
__2”«” )] x;(+1)+ L
Uj((ul,...,u1>;f)+ Tsj

Uj((ul,-..,uj-);t)+ Tfy‘ mj((ula--.,ul);t)

and

u%((ul,. .. ,uI);t)rgj

vﬁ((ul,...,ul);t)+r§j'

ui-((ul,...,ul);t+1) =

A Modified Bayesian Approach

The simulation results of Table A2 suggest that. the complete Bayesian approach can
be rather sluggish in identifying the true number and types of units at a node. Simulation
experiments not reported here suggest that in some cases the procedure may never
identify the true number and types of units. As mentioned earlier, one cause for this
behavior appears to be that the posterior distribution of the number and types of units at
the node can attribute essentially 0 probability to particular configurations; this 0
probability can make it difficult for the procedure to adjust to new circumstances.

Another aspect of the Bayesian procedure is that it continually updates the conditional
means and variances of the amount of each type of asset for each unit type and number
configuration. This continual updating may result in the posterior conditional moments
being far away from the original conditional moments; this may negatively influence the
ability of the Bayesian procedure to correctly identify the numbers and types of units at a
node in a new situation.

Preliminary experiments have suggested that the following may result in an improved

ability to correctly identify the number and type of units at a node. At each time ¢ compare
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the just computed posterior distribution a((uy, ..., #7);f) to the prior distribution
m(uy, ..., up;t-1). If

max

(u1 ,...,u1)

(-7 )s2) = T((2a..,uy ;2 — 1)>08,

say, declare that a change has occurred. Use an equally likely prior distribution for unit
types and numbers when the next sensor observation arrives; also reset the conditional
moments to their original values before updating.
An Example =

Tables A3 and A4 report the results of a simulation study. The scenario is as follows.
One unit of type I has a mean number of asset 1 (respectively assets 2 and 3) of 0
(respectively 100, 30) with standard deviation for the number of asset 1 (respectively
assets 2 and 3) of 0.5 (respectively 25 and 5). One unit of type II has a mean number of
asset 1 (respectively assets 2 and 3) of 75 (respectively 15 and 50) with standard
deviation for the number of asset 1 (respectively assets 2 and 3) of 10 (respectively 25
and 5). A sensor of type 1 can estimate a number of assets of type 1 and type 2 but not
type 3; the error standard deviation is 25, (respectively 35) for type 1 (respectively type 2)
assets. A sensor of type 2 can estimate numbers of assets of type 3 only with error
standard deviation 10.

The possibilities for node occupancy are (0, 0) (empty); (1, 0) (1 unit of type I); (2, 0)
(2 units of type I); (0, 1) (1 unit of type II); (0, 2) (2 units of type II), and (1, 1) (1 unit of
type I and 1 umit of type II). The prior distribution is that each of these configurations is
equally likely.

During the first 5 time periods there is 1 unit of type I at the node; the true number of
assets of type 1 (respectively asset type 2 and 3) is O (respectively 69 and 39); these

numbers are obtained by drawing from the appropriate normal distribution for asset type,
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making the resulting number 0 if it is negative and rounding down to the next integer
value. ,

During times 6-15 there are 1 unit of type I and 1 unit of type II at the node with 99
combined assets of type 1, 231 combined assets of type 2, and 63 combined assets of type
3; these true numbers of assets are obtained in a similar manner to those of the first 5 time
periods.

At each time a sensor type is randomly selected and the sensor observation(s) are
drawn from a normal distribution with mean the true number of assets of that type and
standard deviation for that asset type for that sensor; the observations are set equal to 0 if
they are negative.

Table A3 displays results of using the Bayesian updating procedure. Displayed are the
data, the posterior probabilities of each configuration, and the conditional mean number
of each asset type given the configuration and the observations. The row at time 0
displays the prior information. The posterior distributions indicate that the procedure uses
the sensor observations to correctly classify by time 5 that there is 1 unit of type I at the
node. By time 7 the posterior distribution indicates that there is evidence that the
occupancy of the node has changed. However, the posterior distribution is never able to
assign an appreciable probability to the correct identity of 1 unit of type I and 1 unit of
type 1L

Table A4 displays the results of using the Bayesian updating procedure with the
following adjustment. At each time the prior and posterior distribution are compared. If
the total variation is less than 0.8, nothing is done. If it is greater than 0.8, the posterior is
replaced with the original prior and the posterior conditional moments are replaced with
the original prior conditional moments for the calculations the next time period. In Table
A4, the total variation of the prior and posterior exceeded 0.8 at time 11. Thus the results

for times 12-15 differ from those of Table A3. Note that in this case the posterior
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distribution is able to assign a largish probability to the true configuration of 1 unit of

type I and 1 unit of type II.

Note that the random assignment of sensor type has assigned a type 2 sensor to make
most of the observations. Recall that a type 2 sensor can only estimate numbers of assets
of type 3. However, the most obvious feature of a type I unit is that it has no assets of
type L. Thus, it is not surprising that the Bayesian procedure is not perfect.

Note also, that even though the occupancy of the node changed at time 6, it was not
until time 11 until the total variation between the prior and posterior indicates it; note that

time 11 is also the first observation from a sensor of type I after time 5.
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